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The Story behind the Succinctly Series 
of Books 

Daniel Jebaraj, Vice President 
Syncfusion, Inc. 

taying on the cutting edge 

As many of you may know, Syncfusion is a provider of software components for the 
Microsoft platform. This puts us in the exciting but challenging position of always 
being on the cutting edge. 

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other 
week these days, we have to educate ourselves, quickly. 

Information is plentiful but harder to digest 

In reality, this translates into a lot of book orders, blog searches, and Twitter scans. 

While more information is becoming available on the Internet and more and more books are 
being published, even on topics that are relatively new, one aspect that continues to inhibit us is 
the inability to find concise technology overview books.  

We are usually faced with two options: read several 500+ page books or scour the web for 
relevant blog posts and other articles. Just as everyone else who has a job to do and customers 
to serve, we find this quite frustrating. 

The Succinctly series 

This frustration translated into a deep desire to produce a series of concise technical books that 
would be targeted at developers working on the Microsoft platform.  

We firmly believe, given the background knowledge such developers have, that most topics can 
be translated into books that are between 50 and 100 pages.  

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything 
wonderful born out of a deep desire to change things for the better? 

The best authors, the best content 

Each author was carefully chosen from a pool of talented experts who shared our vision. The 
book you now hold in your hands, and the others available in this series, are a result of the 
authors’ tireless work. You will find original content that is guaranteed to get you up and running 
in about the time it takes to drink a few cups of coffee.  

S 
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Free forever  

Syncfusion will be working to produce books on several topics. The books will always be free. 
Any updates we publish will also be free.  

Free? What is the catch? 

There is no catch here. Syncfusion has a vested interest in this effort.  

As a component vendor, our unique claim has always been that we offer deeper and broader 
frameworks than anyone else on the market. Developer education greatly helps us market and 
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn 
the moon to cheese!” 

Let us know what you think 

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at 
succinctly-series@syncfusion.com.  

We sincerely hope you enjoy reading this book and that it helps you better understand the topic 
of study. Thank you for reading. 

 

 

 

 

 

 

 

 

 

 

 

Please follow us on Twitter and “Like” us on Facebook to help us spread the  
word about the Succinctly series! 

                      

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion


 10 

About the Author 

Alexandre Kowalczyk is a software developer at ABC Arbitrage, a financial company doing 
automated trading on the stock market, and a certified Microsoft Specialist in C#.  

Alexandre first encountered Support Vector Machines (SVMs) while attending the Andrew Ng 
online course on Machine Learning three years ago. Since then, he has successfully used 
SVMs on several projects, including real-time news classification.  

In his spare time, he participates in Kaggle contests. He has used SVM implementations in C#, 
R, and Python to classify plankton images, Greek news, and products into categories, and to 
predict physical and chemical properties of soil using spectral measurements.  

Alexandre has spent two years studying SVMs, allowing him to understand how they work. 
Because it was difficult to find a simple overview of the subject, he started the blog SVM 
Tutorial, where he explains SVMs as simply as he can.  

He hopes this book will help you understand SVMs and provide you with another tool in your 
machine-learning toolbox. 

Acknowledgments 

I would like to thank Syncfusion for providing me the opportunity to write this book, Grégory 
Godin for taking the time to read and review it, and James McCaffrey for his in-depth technical 
review. 

Dedication 

I dedicate this book to my mother, Claudine Kowalczyk (1954–2003).  

https://www.linkedin.com/in/alexandrekow
https://www.kaggle.com/
http://www.svm-tutorial.com/
http://www.svm-tutorial.com/


 11 

Preface 

Who is this book for? 

This book’s aim is to provide a general overview of Support Vector Machines (SVMs). You will 
learn what they are, which kinds of problems they can solve, and how to use them. I tried to 
make this book useful for many categories of readers. Software engineers will find a lot of code 
examples alongside simple explanations of the algorithms. A deeper understanding of how 
SVMs work internally will enable you to make better use of the available implementations.  

Students looking to take a first look at SVMs will find a large enough coverage of the subject to 
spike their curiosity. I also tried to include as many references as I could so that the interested 
reader can dive deeper.  

How should you read this book? 

Because each chapter is built on the previous one, reading this book sequentially is the 
preferred method. 

References 

You will find a bibliography at the end of the book. A reference to a paper or book is made with 
the name of the author followed by the publication date. For instance, (Bishop, 2006) refers to 
the following line in the bibliography:  

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. 

Code listings 

The code listings in this book have been created using the Pycharm IDE, Community Edition 
2016.2.3, and executed with WinPython 64-bit 3.5.1.2 version of Python and NumPy. 
You can find the code source associated with this book in this Bitbucket. 

https://bitbucket.org/syncfusiontech/svm-succinctly
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Introduction 

Support Vector Machine is one of the most performant off-the-shelf supervised machine 
learning algorithms. This means that when you have a problem and you try to run a SVM on it, 
you will often get pretty good results without many tweaks. Despite this, because it is based on 
a strong mathematical background, it is often seen as a black box. In this book, we will go under 
the hood and look at the main ideas behind SVM. There are several Support Vector Machines, 
which is why I will often refer to SVMs. The goal of this book is to understand how they work.  
 
SVMs are the result of the work of several people over many years. The first SVM algorithm is 
attributed to Vladimir Vapnik in 1963. He later worked closely with Alexey Chervonenkis on what 
is known as the VC theory, which attempts to explain the learning process from a statistical 
point of view, and they both contributed greatly to the SVM. You can find a very detailed history 
of SVMs here. 

In real life, SVMs have been successfully used in three main areas: text categorization, image 
recognition, and bioinformatics (Cristianini & Shawe-Taylor, 2000). Specific examples include 
classifying news stories, handwritten digit recognition, and cancer tissue samples.  

In the first chapter, we will consider important concepts: vectors, linear separability, and 
hyperplanes. They are the building blocks that will allow you to understand SVMs. In Chapter 2, 
instead of jumping right into the subject, we will study a simple algorithm known as the 
Perceptron. Do not skip it—even though it does not discuss SVMs, this chapter will give you 
precious insight into why SVMs are better at classifying data.  

Chapter 3 will be used to step-by-step construct what is known as the SVM optimization 
problem. Chapter 4, which is probably the hardest, will show you how to solve this problem—
first mathematically, then programmatically. In Chapter 5, we will discover a new support vector 
machine known as the Soft-margin SVM. We will see how it is a crucial improvement to the 
original problem.  

Chapter 6 will introduce kernels and will explain the so called “kernel trick.” With this trick, we 
will get the kernelized SVM, which is the most-used nowadays. In Chapter 7, we will learn about 
SMO, an algorithm specifically created to quickly solve the SVM optimization problem. In 
Chapter 8, we will see that SVMs can be used to classify more than one class.  

Every chapter contains code samples and figures so that you can understand the concepts 
more easily. Of course, this book cannot cover every subject, and some of them will not be 
presented. In the conclusion, you will find pointers toward what you can learn next about SVMs.  

Let us now begin our journey. 

 

https://en.wikipedia.org/wiki/Vapnik%E2%80%93Chervonenkis_theory
http://www.svms.org/history.html
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Chapter 1  Prerequisites 

This chapter introduces some basics you need to know in order to understand SVMs better. We 
will first see what vectors are and look at some of their key properties. Then we will learn what it 
means for data to be linearly separable before introducing a key component: the hyperplane.  

Vectors 

In Support Vector Machine, there is the word vector. It is important to know some basics about 
vectors in order to understand SVMs and how to use them. 

What is a vector? 

A vector is a mathematical object that can be represented by an arrow (Figure 1).  

 

Figure 1: Representation of a vector 

When we do calculations, we denote a vector with the coordinates of its endpoint (the point 
where the tip of the arrow is). In Figure 1, the point A has the coordinates (4,3). We can write: 

 

If we want to, we can give another name to the vector, for instance, .  

 

From this point, one might be tempted to think that a vector is defined by its coordinates. 
However, if I give you a sheet of paper with only a horizontal line and ask you to trace the same 
vector as the one in Figure 1, you can still do it. 

 



 14 

You need only two pieces of information: 

• What is the length of the vector? 
• What is the angle between the vector and the horizontal line? 

This leads us to the following definition of a vector:  

A vector is an object that has both a magnitude and a direction. 

Let us take a closer look at each of these components. 

The magnitude of a vector 

The magnitude, or length, of a vector  is written , and is called its norm. 

 

Figure 2: The magnitude of this vector is the length of the segment OA 

In Figure 2, we can calculate the norm  of vector  by using the Pythagorean theorem: 

 

 

 

 

 

In general, we compute the norm of a vector   by using the Euclidean norm 
formula:   
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In Python, computing the norm can easily be done by calling the norm function provided by the 

numpy module, as shown in Code Listing 1. 

Code Listing 1 

import numpy as np 
 
x = [3,4] 
np.linalg.norm(x) # 5.0 

The direction of a vector 

The direction is the second component of a vector. By definition, it is a new vector for which the 
coordinates are the initial coordinates of our vector divided by its norm.  

The direction of a vector  is the vector: 

 
 

It can be computed in Python using the code in Code Listing 2. 

Code Listing 2 

import numpy as np 
 
# Compute the direction of a vector x. 
def direction(x): 
    return x/np.linalg.norm(x) 

Where does it come from? Geometry. Figure 3 shows us a vector  and its angles with respect 
to the horizontal and vertical axis. There is an angle  (theta) between  and the horizontal axis, 
and there is an angle  (alpha) between  and the vertical axis. 
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Figure 3: A vector u and its angles with respect to the axis 

Using elementary geometry, we see that  and   , which means that  can 

also be defined by:   

 

The coordinates of  are defined by cosines. As a result, if the angle between  and an axis 
changes, which means the direction of  changes,  will also change. That is why we call this 
vector the direction of vector . We can compute the value of  (Code Listing 3), and we find 
that its coordinates are  . 

Code Listing 3 

u = np.array([3,4])  
w = direction(u) 
 
print(w) # [0.6 , 0.8]  

It is interesting to note is that if two vectors have the same direction, they will have the same 
direction vector (Code Listing 4). 

Code Listing 4 

u_1 = np.array([3,4]) 
u_2 = np.array([30,40]) 
 
print(direction(u_1)) # [0.6 , 0.8] 
print(direction(u_2)) # [0.6 , 0.8] 
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Moreover, the norm of a direction vector is always 1. We can verify that with the vector 
 (Code Listing 5). 

Code Listing 5 

np.linalg.norm(np.array([0.6, 0.8])) # 1.0 

It makes sense, as the sole objective of this vector is to describe the direction of other vectors—
by having a norm of 1, it stays as simple as possible. As a result, a direction vector such as  is 
often referred to as a unit vector.  

Dimensions of a vector 

Note that the order in which the numbers are written is important. As a result, we say that a -
dimensional vector is a tuple of  real-valued numbers. 

For instance,  is a two-dimensional vector; we often write  (  belongs to  ). 

Similarly, the vector  is a three-dimensional vector, and . 

The dot product 

The dot product is an operation performed on two vectors that returns a number. A number is 
sometimes called a scalar; that is why the dot product is also called a scalar product. 

People often have trouble with the dot product because it seems to come out of nowhere. What 
is important is that it is an operation performed on two vectors and that its result gives us some 
insights into how the two vectors relate to each other. There are two ways to think about the dot 
product: geometrically and algebraically. 

Geometric definition of the dot product 

Geometrically, the dot product is the product of the Euclidean magnitudes of the two vectors 
and the cosine of the angle between them. 
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Figure 4: Two vectors x and y 

This means that if we have two vectors,  and , with an angle   between them (Figure 4), their 
dot product is: 

 

By looking at this formula, we can see that the dot product is strongly influenced by the angle :  

• When ,  we have    and    

• When , we have   and    

• When , we have   and    

Keep this in mind—it will be useful later when we study the Perceptron learning algorithm.  

We can write a simple Python function to compute the dot product using this definition (Code 
Listing 6) and use it to get the value of the dot product in Figure 4 (Code Listing 7). 

Code Listing 6 

import math 

import numpy as np 

 

def geometric_dot_product(x,y, theta): 

    x_norm = np.linalg.norm(x) 

    y_norm = np.linalg.norm(y) 
    return x_norm * y_norm * math.cos(math.radians(theta)) 

However, we need to know the value of  to be able to compute the dot product.  
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Code Listing 7 

theta = 45  

x = [3,5] 
y = [8,2] 

 

print(geometric_dot_product(x,y,theta))  # 34.0 

Algebraic definition of the dot product 

 

Figure 5: Using these three angles will allow us to simplify the dot product 

In Figure 5, we can see the relationship between the three angles ,  (beta), and   (alpha):  

 

This means computing  is the same as computing . 

Using the difference identity for cosine we get:  
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If we multiply both sides by  we get: 

 

We already know that: 

 

This means the dot product can also be written:  

 

Or: 

 

In a more general way, for -dimensional vectors, we can write:  

 

This formula is the algebraic definition of the dot product. 

Code Listing 8 

def dot_product(x,y): 

    result = 0 

    for i in range(len(x)): 

        result = result + x[i]*y[i] 

    return result 

This definition is advantageous because we do not have to know the angle  to compute the dot 
product. We can write a function to compute its value (Code Listing 8) and get the same result 
as with the geometric definition (Code Listing 9). 

Code Listing 9 

x = [3,5] 

y = [8,2] 
print(dot_product(x,y)) # 34 

Of course, we can also use the dot function provided by numpy (Code Listing 10). 
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Code Listing 10 

import numpy as np 

 

x = np.array([3,5]) 
y = np.array([8,2]) 

 

print(np.dot(x,y)) # 34 

We spent quite some time understanding what the dot product is and how it is computed. This is 
because the dot product is a fundamental notion that you should be comfortable with in order to 
figure out what is going on in SVMs. We will now see another crucial aspect, linear separability.  

Understanding linear separability 

In this section, we will use a simple example to introduce linear separability. 

Linearly separable data 

Imagine you are a wine producer. You sell wine coming from two different production batches: 

• One high-end wine costing $145 a bottle. 
• One common wine costing $8 a bottle. 

Recently, you started to receive complaints from clients who bought an expensive bottle. They 
claim that their bottle contains the cheap wine. This results in a major reputation loss for your 
company, and customers stop ordering your wine. 

Using alcohol-by-volume to classify wine 

You decide to find a way to distinguish the two wines. You know that one of them contains more 
alcohol than the other, so you open a few bottles, measure the alcohol concentration, and plot it.  
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Figure 6: An example of linearly separable data 

In Figure 6, you can clearly see that the expensive wine contains less alcohol than the cheap 
one. In fact, you can find a point that separates the data into two groups. This data is said to be 
linearly separable. For now, you decide to measure the alcohol concentration of your wine 
automatically before filling an expensive bottle. If it is greater than 13 percent, the production 
chain stops and one of your employee must make an inspection. This improvement dramatically 
reduces complaints, and your business is flourishing again. 

This example is too easy—in reality, data seldom works like that. In fact, some scientists really 
measured alcohol concentration of wine, and the plot they obtained is shown in Figure 7. This is 
an example of non-linearly separable data. Even if most of the time data will not be linearly 
separable, it is fundamental that you understand linear separability well. In most cases, we will 
start from the linearly separable case (because it is the simpler) and then derive the non-
separable case. 

Similarly, in most problems, we will not work with only one dimension, as in Figure 6. Real-life 
problems are more challenging than toy examples, and some of them can have thousands of 
dimensions, which makes working with them more abstract. However, its abstractness does not 
make it more complex. Most examples in this book will be two-dimensional examples. They are 
simple enough to be easily visualized, and we can do some basic geometry on them, which will 
allow you to understand the fundamentals of SVMs. 
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Figure 7: Plotting alcohol by volume from a real dataset 

In our example of Figure 6, there is only one dimension: that is, each data point is represented 
by a single number. When there are more dimensions, we will use vectors to represent each 
data point. Every time we add a dimension, the object we use to separate the data changes. 
Indeed, while we can separate the data with a single point in Figure 6, as soon as we go into 
two dimensions we need a line (a set of points), and in three dimensions we need a plane 
(which is also a set of points). 

To summarize, data is linearly separable when: 

• In one dimension, you can find a point separating the data (Figure 6). 
• In two dimensions, you can find a line separating the data (Figure 8). 
• In three dimensions, you can find a plane separating the data (Figure 9). 

 
 

Figure 8: Data separated by a line Figure 9: Data separated by a plane 

Similarly, when data is non-linearly separable, we cannot find a separating point, line, or plane. 
Figure 10 and Figure 11 show examples of non-linearly separable data in two and three 
dimensions.  
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Figure 10: Non-linearly separable data in 2D Figure 11: Non-linearly separable data in 3D 

Hyperplanes  

What do we use to separate the data when there are more than three dimensions? We use 
what is called a hyperplane. 

What is a hyperplane? 

In geometry, a hyperplane is a subspace of one dimension less than its ambient space. 

This definition, albeit true, is not very intuitive. Instead of using it, we will try to understand what 
a hyperplane is by first studying what a line is. 

If you recall mathematics from school, you probably learned that a line has an equation of the 
form , that the constant   is known as the slope, and that  intercepts the y-axis. 
There are several values of  for which this formula is true, and we say that the set of the 
solutions is a line.  

What is often confusing is that if you study the function   in a calculus course, you 
will be studying a function with one variable.  

However, it is important to note that the linear equation  has two variables, 
respectively   and , and we can name them as we want.  
 
For instance, we can rename   as   and  as  , and the equation becomes:  .  

This is equivalent to . 

If we define the two-dimensional vectors   and , we obtain another notation 
for the equation of a line (where  is the dot product of  and ): 
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What is nice with this last equation is that it uses vectors. Even if we derived it by using two-
dimensional vectors, it works for vectors of any dimensions. It is, in fact, the equation of a 
hyperplane.  

From this equation, we can have another insight into what a hyperplane is: it is the set of points 
satisfying . And, if we keep just the essence of this definition: a hyperplane is a set 
of points.  
 
If we have been able to deduce the hyperplane equation from the equation of a line, it is 
because a line is a hyperplane. You can convince yourself by reading the definition of a 
hyperplane again. You will notice that, indeed, a line is a two-dimensional space surrounded by 
a plane that has three dimensions. Similarly, points and planes are hyperplanes, too. 

Understanding the hyperplane equation 

We derived the equation of a hyperplane from the equation of a line. Doing the opposite is 
interesting, as it shows us more clearly the relationship between the two.  

Given vectors ,  and  , we can define a hyperplane having the equation: 

 

This is equivalent to:  

 

 

We isolate  to get: 

 

If we define  and  : 

 

 

We see that the bias  of the line equation is only equal to the bias  of the hyperplane equation 
when . So you should not be surprised if  is not the intersection with the vertical axis 
when you see a plot for a hyperplane (this will be the case in our next example). Moreover, if  
and   have the same sign, the slope   will be negative.  
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Classifying data with a hyperplane 

 

Figure 12: A linearly separable dataset 

Given the linearly separable data of Figure 12, we can use a hyperplane to perform binary 
classification.  

For instance, with the vector  and  we get the hyperplane in Figure 13. 

 

Figure 13: A hyperplane separates the data 

We associate each vector   with a label  , which can have the value  or   (respectively the 
triangles and the stars in Figure 13).  
 
We define a hypothesis function : 

 

which is equivalent to: 
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It uses the position of  with respect to the hyperplane to predict a value for the label . Every 
data point on one side of the hyperplane will be assigned a label, and every data point on the 
other side will be assigned the other label. 

For instance, for ,  is above the hyperplane. When we do the calculation, we get  
, which is positive, so  .  

Similarly, for  ,  is below the hyperplane, and  will return   because 
. 

Because it uses the equation of the hyperplane, which produces a linear combination of the 
values, the function , is called a linear classifier.  

With one more trick, we can make the formula of  even simpler by removing the b constant. 
First, we add a component  to the vector . We get the vector 

  (it reads “  hat” because we put a hat on ). Similarly, we add a component 
 to the vector , which becomes .  

 Note: In the rest of the book, we will call a vector to which we add an artificial 
coordinate an augmented vector.  

When we use augmented vectors, the hypothesis function becomes: 

 

If we have a hyperplane that separates the data set like the one in Figure 13, by using the 
hypothesis function , we are able to predict the label of every point perfectly.  
The main question is: how do we find such a hyperplane? 

How can we find a hyperplane (separating the data or not)? 

Recall that the equation of the hyperplane is  in augmented form. It is important to 
understand that the only value that impacts the shape of the hyperplane is . To convince you, 
we can come back to the two-dimensional case when a hyperplane is just a line. When we 
create the augmented three-dimensional vectors, we obtain   and . 
You can see that the vector  contains both  and  , which are the two main components 
defining the look of the line. Changing the value of  gives us different hyperplanes (lines), as 
shown in Figure 14.  
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Figure 14: Different values of w will give you different hyperplanes 

Summary 

After introducing vectors and linear separability, we learned what a hyperplane is and how we 
can use it to classify data. We then saw that the goal of a learning algorithm trying to learn a 
linear classifier is to find a hyperplane separating the data. Eventually, we discovered that 
finding a hyperplane is equivalent to finding a vector .  

We will now examine which approaches learning algorithms use to find a hyperplane that 
separates the data. Before looking at how SVMs do this, we will first look at one of the simplest 
learning models: the Perceptron.  
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Chapter 2  The Perceptron  

Presentation 

The Perceptron is an algorithm invented in 1957 by Frank Rosenblatt, a few years before the 
first SVM. It is widely known because it is the building block of a simple neural network: the 
multilayer perceptron. The goal of the Perceptron is to find a hyperplane that can separate a 
linearly separable data set. Once the hyperplane is found, it is used to perform binary 
classification. 

Given augmented vectors  and , the Perceptron uses the 
same hypothesis function we saw in the previous chapter to classify a data point :  

 

The Perceptron learning algorithm 

Given a training set  of  -dimensional training examples  , the Perceptron Learning 
Algorithm (PLA) tries to find a hypothesis function  that predicts the label  of every  
correctly.  

The hypothesis function of the Perceptron is , and we saw that  is just the 
equation of a hyperplane. We can then say that the set  of hypothesis functions is the set of 

 dimensional hyperplanes (  because a hyperplane has one dimension less than its 
ambient space). 

What is important to understand here is that the only unknown value is . It means that the goal 
of the algorithm is to find a value for . You find ; you have a hyperplane. There is an infinite 
number of hyperplanes (you can give any value to ), so there is an infinity of hypothesis 
functions. 

This can be written more formally this way:  

Given a training set:  and a set  of hypothesis functions. 

Find  such that   for every . 

This is equivalent to: 

Given a training set:   and a set  of hypothesis functions. 

Find  such that   for every . 
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The PLA is a very simple algorithm, and can be summarized this way: 

1. Start with a random hyperplane (defined by a vector ) and use it to classify the data.  
2. Pick a misclassified example and select another hyperplane by updating the value of , 

hoping it will work better at classifying this example (this is called the update rule).  
3. Classify the data with this new hyperplane. 
4. Repeat steps 2 and 3 until there is no misclassified example. 

Once the process is over, you have a hyperplane that separates the data.  
The algorithm is shown in Code Listing 11. 

Code Listing 11 

import numpy as np 
 
def perceptron_learning_algorithm(X, y): 
    w = np.random.rand(3)   # can also be initialized at zero. 
    misclassified_examples = predict(hypothesis, X, y, w) 
 
    while misclassified_examples.any(): 
        x, expected_y = pick_one_from(misclassified_examples, X, y) 
        w = w + x * expected_y  # update rule 
        misclassified_examples = predict(hypothesis, X, y, w) 
 
    return w 

Let us look at the code in detail. 

The perceptron_learning_algorithm uses several functions (Code Listing 12). The 

hypothesis function is just  written in Python code; as we saw before, it is the function that 

returns the label  predicted for an example  when classifying with the hyperplane defined by 
. The predict function applies the hypothesis for every example and returns the ones that 

are misclassified. 

Code Listing 12 

def hypothesis(x, w): 
    return np.sign(np.dot(w, x)) 
 
 
# Make predictions on all data points 
# and return the ones that are misclassified. 
def predict(hypothesis_function, X, y, w): 
    predictions = np.apply_along_axis(hypothesis_function, 1, X, w) 
    misclassified = X[y != predictions] 
    return misclassified 

Once we have made predictions with predict, we know which examples are misclassified, so 

we use the function pick_one_from to select one of them randomly (Code Listing 13). 
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Code Listing 13 

# Pick one misclassified example randomly 

# and return it with its expected label. 

def pick_one_from(misclassified_examples, X, y): 
    np.random.shuffle(misclassified_examples) 

    x = misclassified_examples[0] 

    index = np.where(np.all(X == x, axis=1)) 

    return x, y[index] 

We then arrive at the heart of the algorithm: the update rule. For now, just remember that it 
changes the value of . Why it does this will be explained in detail later. We once again use the 
predict function, but this time, we give it the updated . It allows us to see if we have 

classified all data points correctly, or if we need to repeat the process until we do. 

Code Listing 14 demonstrates how we can use the perceptron_learning_algorithm function 

with a toy data set. Note that we need the  and  vectors to have the same dimension, so we 
convert every   vector into an augmented vector before giving it to the function. 

Code Listing 14 

# See Appendix A for more information about the dataset 
from succinctly.datasets import get_dataset, linearly_separable as ls 
 
np.random.seed(88) 

 

X, y = get_dataset(ls.get_training_examples) 
 
# transform X into an array of augmented vectors. 
X_augmented = np.c_[np.ones(X.shape[0]), X] 
 
w = perceptron_learning_algorithm(X_augmented, y) 
 
print(w) # [-44.35244895   1.50714969   5.52834138] 

Understanding the update rule 

Why do we use this particular update rule? Recall that we picked a misclassified example at 
random. Now we would like to make the Perceptron correctly classify this example. To do so, 
we decide to update the vector . The idea here is simple. Since the sign of the dot product 
between  and  is incorrect, by changing the angle between them, we can make it correct:  

• If the predicted label is 1, the angle between  and  is smaller than , and we want to 
increase it. 

• If the predicted label is -1, the angle between  and  is bigger than , and we want to 
decrease it. 
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Figure 15: Two vectors 

Let’s see what happens with two vectors,  and  , having an angle  between (Figure 15). 

On the one hand, adding them creates a new vector  and the angle  between   and  

is smaller than  (Figure 16).  

 

Figure 16: The addition creates a smaller angle 

On the other hand, subtracting them creates a new vector , and the angle  between  and 
 is bigger than  (Figure 17). 
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Figure 17: The subtraction creates a bigger angle 

We can use these two observations to adjust the angle:  

• If the predicted label is 1, the angle is smaller than . We want to increase the angle, 

so we set  . 

• If the predicted label is -1, the angle is bigger than . We want to decrease the angle, 

so we set  . 

As we are doing this only on misclassified examples, when the predicted label has a value, the 

expected label is the opposite. This means we can rewrite the previous statement: 

• If the expected label is -1: We want to increase the angle, so we set  . 

• If the expected label is +1: We want to decrease the angle, so we set  . 

When translated into Python it gives us Code Listing 15, and we can see that it is strictly 

equivalent to Code Listing 16, which is the update rule. 

Code Listing 15 

def update_rule(expected_y, w, x): 

    if expected_y == 1: 

        w = w + x 

    else: 

        w = w - x 

    return w 
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Code Listing 16 

def update_rule(expected_y, w, x): 

    w = w + x * expected_y 

    return w 

We can verify that the update rule works as we expect by checking the value of the hypothesis 
before and after applying it (Code Listing 17). 

Code Listing 17 

import numpy as np 
 
def hypothesis(x, w): 
    return np.sign(np.dot(w, x)) 
 
x = np.array([1, 2, 7]) 
expected_y = -1 
w = np.array([4, 5, 3]) 
 
print(hypothesis(w, x))             # The predicted y is 1. 
 
w = update_rule(expected_y, w, x)   # we apply the update rule. 
  
print(hypothesis(w, x))             # The predicted y is -1. 

Note that the update rule does not necessarily change the sign of the hypothesis for the 
example the first time. Sometimes it is necessary to apply the update rule several times before it 
happens as shown in Code Listing 18. This is not a problem, as we are looping across 
misclassified examples, so we will continue to use the update rule until the example is correctly 
classified. What matters here is that each time we use the update rule, we change the value of 
the angle in the right direction (increasing it or decreasing it).  

Code Listing 18 

import numpy as np 
 
x = np.array([1,3]) 
expected_y = -1 
w = np.array([5, 3]) 
 
print(hypothesis(w, x))            # The predicted y is 1. 
 
w = update_rule(expected_y, w, x)  # we apply the update rule. 
 
print(hypothesis(w, x))            # The predicted y is 1. 
 
w = update_rule(expected_y, w, x)  # we apply the update rule once again. 
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print(hypothesis(w, x))            # The predicted y is -1. 

Also note that sometimes updating the value of  for a particular example  changes the 
hyperplane in such a way that another example  previously correctly classified becomes 
misclassified. So, the hypothesis might become worse at classifying after being updated. This is 
illustrated in Figure 18, which shows us the number of classified examples at each iteration 
step. One way to avoid this problem is to keep a record of the value of  before making the 
update and use the updated  only if it reduces the number of misclassified examples. This 
modification of the PLA is known as the Pocket algorithm (because we keep  in our pocket). 

 

Figure 18: The PLA update rule oscillates 

Convergence of the algorithm 

We said that we keep updating the vector  with the update rule until there is no misclassified 
point. But how can we be so sure that will ever happen? Luckily for us, mathematicians have 
studied this problem, and we can be very sure because the Perceptron convergence theorem 
guarantees that if the two sets P and N (of positive and negative examples respectively) are 
linearly separable, the vector  is updated only a finite number of times, which was first proved 
by Novikoff in 1963 (Rojas, 1996). 

Understanding the limitations of the PLA 

One thing to understand about the PLA algorithm is that because weights are randomly 
initialized and misclassified examples are randomly chosen, it is possible the algorithm will 
return a different hyperplane each time we run it. Figure 19 shows the result of running the PLA 
on the same dataset four times. As you can see, the PLA finds four different hyperplanes. 
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Figure 19: The PLA finds a different hyperplane each time 

At first, this might not seem like a problem. After all, the four hyperplanes perfectly classify the 
data, so they might be equally good, right? However, when using a machine learning algorithm 
such as the PLA, our goal is not to find a way to classify perfectly the data we have right now. 
Our goal is to find a way to correctly classify new data we will receive in the future. 

Let us introduce some terminology to be clear about this. To train a model, we pick a sample of 
existing data and call it the training set. We train the model, and it comes up with a hypothesis 
(a hyperplane in our case). We can measure how well the hypothesis performs on the training 
set: we call this the in-sample error (also called training error). Once we are satisfied with the 
hypothesis, we decide to use it on unseen data (the test set) to see if it indeed learned 
something. We measure how well the hypothesis performs on the test set, and we call this the 
out-of-sample error (also called the generalization error). 

Our goal is to have the smallest out-of-sample error.  
 
In the case of the PLA, all hypotheses in Figure 19 perfectly classify the data: their in-sample 
error is zero. But we are really concerned about their out-of-sample error. We can use a test set 
such as the one in Figure 20 to check their out-of-sample errors. 
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Figure 20: A test dataset 

As you can see in Figure 21, the two hypotheses on the right, despite perfectly classifying the 
training dataset, are making errors with the test dataset. 

Now we better understand why it is problematic. When using the Perceptron with a linearly 
separable dataset, we have the guarantee of finding a hypothesis with zero in-sample error, but 
we have no guarantee about how well it will generalize to unseen data (if an algorithm 
generalizes well, its out-of-sample error will be close to its in-sample error). How can we choose 
a hyperplane that generalizes well? As we will see in the next chapter, this is one of the goals of 
SVMs.  

 

Figure 21: Not all hypotheses have perfect out-of-sample error 
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Summary 

In this chapter, we have learned what a Perceptron is. We then saw in detail how the 
Perceptron Learning Algorithm works and what the motivation behind the update rule is. After 
learning that the PLA is guaranteed to converge, we saw that not all hypotheses are equal, and 
that some of them will generalize better than others. Eventually, we saw that the Perceptron is 
unable to select which hypothesis will have the smallest out-of-sample error and instead just 
picks one hypothesis having the lowest in-sample error at random. 
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Chapter 3  The SVM Optimization Problem 

SVMs search for the optimal hyperplane 

The Perceptron has several advantages: it is a simple model, the algorithm is very easy to 
implement, and we have a theoretical proof that it will find a hyperplane that separates the data. 
However, its biggest weakness is that it will not find the same hyperplane every time. Why do 
we care? Because not all separating hyperplanes are equals. If the Perceptron gives you a 
hyperplane that is very close to all the data points from one class, you have a right to believe 
that it will generalize poorly when given new data.  
 
SVMs do not have this problem. Indeed, instead of looking for a hyperplane, SVMs tries to find 
the hyperplane. We will call this the optimal hyperplane, and we will say that it is the one that 
best separates the data. 

How can we compare two hyperplanes? 

Because we cannot choose the optimal hyperplane based on our feelings, we need some sort 
of metric that will allow us to compare two hyperplanes and say which one is superior to all 
others.  

In this section, we will try to discover how we can compare two hyperplanes. In other words, we 
will search for a way to compute a number that allows us to tell which hyperplane separates the 
data the best. We will look at methods that seem to work, but then we will see why they do not 
work and how we can correct their limitations. Let us try with a simple attempt to compare two 
hyperplanes using only the equation of the hyperplane.  

Using the equation of the hyperplane 

Given an example  and a hyperplane, we wish to know how the example relates to the 
hyperplane.  
 
One key element we already know is that if the value of  satisfies the equation of a line, then it 
means it is on the line. It works in the same way for a hyperplane: for a data point  and a 
hyperplane defined by a vector  and bias , we will get    if  is on the hyperplane.  
 
But what if the point is not on the hyperplane?  

Let us see what happens with an example. In Figure 22, the line is defined by   
and . When we use the equation of the hyperplane: 

• for point , using vector   we get    
• for point , using vector   we get    
• for point , using vector   we get    
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Figure 22: The equation returns a bigger number for A than for B 

As you can see, when the point is not on the hyperplane we get a number different from zero. In 
fact, if we use a point far away from the hyperplane, we will get a bigger number than if we use 
a point closer to the hyperplane. 

Another thing to notice is that the sign of the number returned by the equation tells us where the 
point stands with respect to the line. Using the equation of the line displayed in Figure 23, we 
get: 

•  for point  

•  for point  

•  for point  

 

Figure 23: The equation returns a negative number for C 

If the equation returns a positive number, the point is below the line, while if it is a negative 
number, it is above. Note that it is not necessarily visually above or below, because if you have 
a line like the one in Figure 24, it will be left or right, but the same logic applies. The sign of the 
number returned by the equation of the hyperplane allows us to tell if two points lie on the same 
side. In fact, this is exactly what the hypothesis function we defined in Chapter 2 does. 
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Figure 24: A line can separate the space in different ways 

We now have the beginning of a solution for comparing two hyperplanes. 

Given a training example  and a hyperplane defined by a vector  and bias , we compute 
the number   to know how far the point is from the hyperplane.  

Given a data set  , we compute   for each training example, 
and say that the number  is the smallest   we encounter.  

 

If we need to choose between two hyperplanes, we will then select the one from which  is the 
largest. 

To be clear, this means that if we have  hyperplanes, we will compute    and select the 

hyperplane having this . 

Problem with examples on the negative side 

Unfortunately, using the result of the hyperplane equation has its limitations. The problem is that 
taking the minimum value does not work for examples on the negative side (the ones for which 
the equation returns a negative value). 

Remember that we always wish to take the  of the point being the closest to the hyperplane. 
Computing  with examples on the positive side actually does this. Between two points with  

  and  , we pick the one having the smallest number, so we choose . However, 
between two examples having  and , this rule will pick   because   is smaller 
than , but the closest point is actually the one with .  
 
One way to fix this problem is to consider the absolute value of .  

Given a data set , we compute  for each example and say that  is the  having the smallest 
absolute value: 
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Does the hyperplane correctly classify the data? 

Computing the number  allows us to select a hyperplane. However, using only this value, we 
might pick the wrong one. Consider the case in Figure 25: the examples are correctly 
classified, and the value of  computed using the last formula is 2.  

 

Figure 25: A hyperplane correctly classifying the data 

In Figure 26, the examples are incorrectly classified, and the value of  is also 2. This is 
problematic because using , we do not know which hyperplane is better. In theory, they look 
equally good, but in reality, we want to pick the one from Figure 25.  

 

Figure 26: A hyperplane that does not classify the data correctly 

How can we adjust our formula to meet this requirement?  

Well, there is one component of our training example  that we did not use: the  !  
 
If we multiply   by the value of , we change its sign. Let us call this new number : 

 

 

The sign of  will always be: 

• Positive if the point is correctly classified 
• Negative if the point is incorrectly classified 
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Given a data set , we can compute:  

 

 

With this formula, when comparing two hyperplanes, we will still select the one for which  is the 
largest. The added bonus is that in special cases like the ones in Figure 25 and Figure 26, we 
will always pick the hyperplane that classifies correctly (because  will have a positive value, 
while its value will be negative for the other hyperplane). 

In the literature, the number  has a name, it is called the functional margin of an example; its 
value can be computed in Python, as shown in Code Listing 19. Similarly, the number  is 
known as the functional margin of the data set .  

Code Listing 19 

# Compute the functional margin of an example (x,y) 

# with respect to a hyperplane defined by w and b. 

def example_functional_margin(w, b, x, y): 

    result = y * (np.dot(w, x) + b) 

    return result 

 

# Compute the functional margin of a hyperplane 

# for examples X with labels y. 

def functional_margin(w, b, X, y): 

    return np.min([example_functional_margin(w, b, x, y[i]) 
                  for i, x in enumerate(X)]) 

Using this formula, we find that the functional margin of the hyperplane in Figure 25 is +2, while 
in Figure 26 it is -2. Because it has a bigger margin, we will select the first one.  

 Tip: Remember, we wish to choose the hyperplane with the largest margin.  

Scale invariance  

It looks like we found a good way to compare the two hyperplanes this time. However, there is a 
major problem with the functional margin: is not scale invariant.  
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Given a vector  and bias , if we multiply them by 10, we get  and 
. We say we rescaled them.  

 
The vectors   and , represent the same hyperplane because they have the same unit 
vector. The hyperplane being a plane orthogonal to a vector , it does not matter how long the 
vector is. The only thing that matters is its direction, which, as we saw in the first chapter, is 
given by its unit vector. Moreover, when tracing the hyperplane on a graph, the coordinate of the 
intersection between the vertical axis and the hyperplane will be  , so the hyperplane 
does not change because of the rescaling of , either. 

The problem, as we can see in Code Listing 20, is that when we compute the functional margin 
with , we get a number ten times bigger than with . This means that given any hyperplane, 
we can always find one that will have a larger functional margin, just by rescaling  and .  

Code Listing 20 

x = np.array([1, 1]) 
y = 1 
 
b_1 = 5 
w_1 = np.array([2, 1]) 
 
w_2 = w_1 * 10 
b_2 = b_1 * 10 
 
print(example_functional_margin(w_1, b_1, x, y))  # 8 
print(example_functional_margin(w_2, b_2, x, y))  # 80 

To solve this problem, we only need to make a small adjustment. Instead of using the vector , 
we will use its unit vector. To do so, we will divide  by its norm. In the same way, we will divide 
 by the norm of  to make it scale invariant as well. 

Recall the formula of the functional margin:    

We modify it and obtain a new number :  

  

As before, given a data set , we can compute: 

 

 

The advantage of  is that it gives us the same number no matter how large is the vector   that 
we choose. The number  also has a name—it is called the geometric margin of a training 
example, while  is the geometric margin of the dataset. A Python implementation is shown in 
Code Listing 21. 
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Code Listing 21 

# Compute the geometric margin of an example (x,y) 
# with respect to a hyperplane defined by w and b. 
def example_geometric_margin(w, b, x, y): 
    norm = np.linalg.norm(w) 
    result = y * (np.dot(w/norm, x) + b/norm) 
    return result 
 
# Compute the geometric margin of a hyperplane 
# for examples X with labels y. 
def geometric_margin(w, b, X, y): 
    return np.min([example_geometric_margin(w, b, x, y[i]) 
                  for i, x in enumerate(X)]) 

We can verify that the geometric margin behaves as expected. In Code Listing 22, the function 
returns the same value for the vector  or its rescaled version . 

Code Listing 22 

x = np.array([1,1]) 
y = 1 
 
b_1 = 5 
w_1 = np.array([2,1]) 
 
w_2 = w_1*10 
b_2 = b_1*10 
 
print(example_geometric_margin(w_1, b_1, x, y))  # 3.577708764 
print(example_geometric_margin(w_2, b_2, x, y))  # 3.577708764 

It is called the geometric margin because we can retrieve this formula using simple geometry. It 
measures the distance between  and the hyperplane.  

In Figure 27, we see that the point  is the orthogonal projection of  into the hyperplane. We 
wish to find the distance  between  and .  
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Figure 27: The geometric margin is the distance d between the point X and the hyperplane 

The vector  has the same direction as the vector , so they share the same unit vector . We 

know that the norm of  is , so the vector  can be defined by  .  

Moreover, we can see that , so if we substitute for  and do a little bit of algebra, we 
get:  

 

Now, the point  is on the hyperplane. It means that  satisfies the equation of the hyperplane, 
and we have: 
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Eventually, as we did before, we multiply by  to ensure that we select a hyperplane that 
correctly classifies the data, and it gives us the geometric margin formula we saw earlier:  

 

 

Figure 28: A hyperplane defined by w=(-0.4,-1) 
and b=8 

 

Figure 29: A hyperplane defined by w=(-0.4,-1) 
and b=8.5 

Now that we have defined the geometric margin, let us see how it allows us to compare two 
hyperplanes. We can see that the hyperplane in Figure 28 is closer to the blue star examples 
than to the red triangle examples as compared to the one in Figure 29. As a result, we expect its 
geometric margin to be smaller. Code Listing 23 uses the function defined in Code Listing 21 to 
compute the geometric margin for each hyperplane. As expected from Figure 29, the geometric 
margin of the second hyperplane defined by  and   is larger (0.64 > 0.18). 
Between the two, we would select this hyperplane. 

Code Listing 23 

# Compare two hyperplanes using the geometrical margin. 
 
positive_x = [[2,7],[8,3],[7,5],[4,4],[4,6],[1,3],[2,5]] 
negative_x = [[8,7],[4,10],[9,7],[7,10],[9,6],[4,8],[10,10]] 
 
X = np.vstack((positive_x, negative_x)) 
y = np.hstack((np.ones(len(positive_x)), -1*np.ones(len(negative_x)))) 
 
w = np.array([-0.4, -1]) 
b = 8 
 
# change the value of b 
print(geometric_margin(w, b, X, y))          # 0.185695338177 
print(geometric_margin(w, 8.5, X, y))        # 0.64993368362 
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We see that to compute the geometric margin for another hyperplane, we just need to modify 
the value of  or . We could try to change it by a small increment to see if the margin gets 
larger, but it is kind of random, and it would take a lot of time. Our objective is to find the optimal 
hyperplane for a dataset among all possible hyperplanes, and there is an infinity of 
hyperplanes.  

 Tip: Finding the optimal hyperplane is just a matter of finding the values of w and b 
for which we get the largest geometric margin. 

How can we find the value of  that produces the largest geometric margin? Luckily for us, 
mathematicians have designed tools to solve such problems. To find  and , we need to solve 
what is called an optimization problem. Before looking at what the optimization problem is for 
SVMs, let us do a quick review of what an optimization problem is. 

What is an optimization problem? 

Unconstrained optimization problem 

The goal of an optimization problem is to minimize or maximize a function with respect to 
some variable x (that is, to find the value of x for with the function returns its minimum or 
maximum value). For instance, the problem in which we want to find the minimum of the 

function   is written: 

 

Or, alternatively:  

 

In this case, we are free to search amongst all possible values of . We say that the problem is 
unconstrained. As we can see in Figure 30, the minimum of the function is zero at .  
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Figure 30: Without constraint,  
the minimum is zero 

 

Figure 31: Because of the constraint x-2=0,  
the minimum is 4 

Constrained optimization problem 

Single equality constraint 

Sometimes we are not interested in the minimum of the function by itself, but rather its minimum 
when some constraints are met. In such cases, we write the problem and add the constraints 
preceded by  , which is often abbreviated   For instance, if we wish to know the 
minimum of  but restrict the value of  to a specific value, we can write:  

 

This example is illustrated in Figure 31. In general, constraints are written by keeping zero on 
the right side of the equality so the problem can be rewritten: 

 

Using this notation, we clearly see that the constraint is an affine function while the objective 
function  is a quadratic function. Thus we call this problem a quadratic optimization 
problem or a Quadratic Programming (QP) problem. 
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Feasible set 

The set of variables that satisfies the problem constraints is called the feasible set (or feasible 
region). When solving the optimization problem, the solution will be picked from the feasible set. 
In Figure 31, the feasible set contains only one value, so the problem is trivial. However, when 

we manipulate functions with several variables, such as , it allows us to know 
from which values we are trying to pick a minimum (or maximum).  

For example: 

 

In this problem, the feasible set is the set of all pairs of points , such as . 

Multiple equality constraints and vector notation 

We can add as many constraints as we want. Here is an example of a problem with three 

constraints for the function : 

 

When we have several variables, we can switch to vector notation to improve readability. For 

the vector   the function becomes  , and the problem is written:  

 

When adding constraints, keep in mind that doing so reduces the feasible set. For a solution to 
be accepted, all constraints must be satisfied.  

For instance, let us look at the following the problem:   

 

We could think that  and  are solutions, but this is not the case. When , the 
constraint  is not met; and when , the constraint  is not met. The problem 
is infeasible. 
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 Tip: If you add too many constraints to a problem, it can become infeasible. 

If you change an optimization problem by adding a constraint, you make the optimum worse, or, 
at best, you leave it unchanged (Gershwin, 2010). 

Inequality constraints 

We can also use inequalities as constraints: 

 

And we can combine equality constraints and inequality constraints: 

 

How do we solve an optimization problem? 

Several methods exist that can solve each type of optimization problem. However, presenting 
them is outside the scope of this book. The interested reader can see Optimization Models and 
Application (El Ghaoui, 2015) and Convex Optimization (Boyd & Vandenberghe, 2004), two 
good books for starting on the subject and that are available online for free (see Bibliography for 
details). We will instead focus on the SVMs again and derive an optimization problem allowing 
us to find the optimal hyperplane. How to solve the SVMs optimization problem will be explained 
in detail in the next chapter. 

The SVMs optimization problem 

Given a linearly separable training set  and a hyperplane with 
a normal vector  and bias , recall that the geometric margin  of the hyperplane is defined 
by: 

 

where   is the geometric margin of a training example .  

The optimal separating hyperplane is the hyperplane defined by the normal vector  and bias 
 for which the geometric margin  is the largest.  
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To find  and , we need to solve the following optimization problem, with the constraint that the 
margin of each example should be greater or equal to :  

 

There is a relationship between the geometric margin and the functional margin: 

 

So we can rewrite the problem: 

 

We can then simplify the constraint by removing the norm on both sides of the inequality:  

 

Recall that we are trying to maximize the geometric margin and that the scale of  and  does 
not matter. We can choose to rescale  and  as we want, and the geometric margin will not 
change. As a result, we decide to scale  and  so that . It will not affect the result of the 
optimization problem. 

The problem becomes:  

 

Because   it is the same as: 

 

And because we decided to set , this is equivalent to: 

 

This maximization problem is equivalent to the following minimization problem: 
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 Tip: You can also read an alternate derivation of this optimization problem on this 
page, where I use geometry instead of the functional and geometric margins. 

This minimization problem gives the same result as the following:  

 

The factor  has been added for later convenience, when we will use QP solver to solve the 

problem and squaring the norm has the advantage of removing the square root. 

Eventually, here is the optimization problem as you will see it written in most of the literature: 

 

Why did we take the pain of rewriting the problem like this? Because the original optimization 
problem was difficult to solve. Instead, we now have convex quadratic optimization problem, 
which, although not obvious, is much simpler to solve.  

Summary 

First, we assumed that some hyperplanes are better than others: they will perform better with 
unseen data. Among all possible hyperplanes, we decided to call the “best” hyperplane the 
optimal hyperplane. To find the optimal hyperplane, we searched for a way to compare two 
hyperplanes, and we ended up with a number allowing us to do so. We realized that this 
number also has a geometrical meaning and is called the geometric margin.  

We then stated that the optimal hyperplane is the one with the largest geometric margin and 
that we can find it by maximizing the margin. To make things easier, we noted that we could 
minimize the norm of , the vector normal to the hyperplane, and we will be sure that it will be 
the  of the optimal hyperplane (because if you recall,  is used in the formula for computing 
the geometric margin). 

http://www.svm-tutorial.com/2015/06/svm-understanding-math-part-3/
http://www.svm-tutorial.com/2015/06/svm-understanding-math-part-3/
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Chapter 4  Solving the Optimization Problem 

Lagrange multipliers 

The Italian-French mathematician Giuseppe Lodovico Lagrangia, also known as Joseph-
Louis Lagrange, invented a strategy for finding the local maxima and minima of a function 
subject to equality constraint. It is called the method of Lagrange multipliers. 

The method of Lagrange multipliers 

Lagrange noticed that when we try to solve an optimization problem of the form: 

 

the minimum of  is found when its gradient point in the same direction as the gradient of .  
In other words, when:  

 

So if we want to find the minimum of  under the constraint , we just need to solve for: 

 

Here, the constant  is called a Lagrange multiplier.  

To simplify the method, we observe that if we define a function , then its 
gradient is . As a result, solving for   allows us to find the 
minimum. 

The Lagrange multiplier method can be summarized by these three steps: 

1. Construct the Lagrangian function  by introducing one multiplier per constraint 
2. Get the gradient  of the Lagrangian  
3. Solve for  

The SVM Lagrangian problem 

We saw in the last chapter that the SVM optimization problem is: 
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Let us return to this problem. We have one objective function to minimize: 

 

and  constraint functions: 

 

We introduce the Lagrangian function: 

 

 

Note that we introduced one Lagrange multiplier  for each constraint function.  

We could try to solve for , but the problem can only be solved analytically when the 
number of examples is small (Tyson Smith, 2004). So we will once again rewrite the problem 
using the duality principle. 

To get the solution of the primal problem, we need to solve the following Lagrangian problem: 

 

What is interesting here is that we need to minimize with respect to  and , and to maximize 
with respect to  at the same time. 

 Tip: You may have noticed that the method of Lagrange multipliers is used for 
solving problems with equality constraints, and here we are using them with 
inequality constraints. This is because the method still works for inequality 
constraints, provided some additional conditions (the KKT conditions) are met. We 
will talk about these conditions later. 

The Wolfe dual problem 

The Lagrangian problem has  inequality constraints (where  is the number of training 
examples) and is typically solved using its dual form. The duality principle tells us that an 
optimization problem can be viewed from two perspectives. The first one is the primal problem, 
a minimization problem in our case, and the other one is the dual problem, which will be a 
maximization problem. What is interesting is that the maximum of the dual problem will always 
be less than or equal to the minimum of the primal problem (we say it provides a lower bound to 
the solution of the primal problem). 
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In our case, we are trying to solve a convex optimization problem, and Slater’s condition holds 
for affine constraints (Gretton, 2016), so Slater’s theorem tells us that strong duality holds. 
This means that the maximum of the dual problem is equal to the minimum of the primal 
problem. Solving the dual is the same thing as solving the primal, except it is easier. 

Recall that the Lagrangian function is:  

 

The Lagrangian primal problem is: 

 

Solving the minimization problem involves taking the partial derivatives of  with respect to  
and .  

 

 

From the first equation, we find that:
 

 

 
Let us substitute  by this value into  : 
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So we successfully removed , but  is still used in the last term of the function: 

 

We note that  implies that . As a result, the last term is equal to zero, and we 

can write: 

 

This is the Wolfe dual Lagrangian function.  

The optimization problem is now called the Wolfe dual problem: 

 

Traditionally the Wolfe dual Lagrangian problem is constrained by the gradients being equal to 

zero. In theory, we should add the constraints   and  . However, we only added 

the latter. Indeed, we added  because it is necessary for removing  from the function. 

However, we can solve the problem without the constraint  . 

The main advantage of the Wolfe dual problem over the Lagrangian problem is that the 
objective function  now depends only on the Lagrange multipliers. Moreover, this formulation 
will help us solve the problem in Python in the next section and will be very helpful when we 
define kernels later.  

Karush-Kuhn-Tucker conditions 

Because we are dealing with inequality constraints, there is an additional requirement: the 
solution must also satisfy the Karush-Kuhn-Tucker (KKT) conditions. 
 
The KKT conditions are first-order necessary conditions for a solution of an optimization 
problem to be optimal. Moreover, the problem should satisfy some regularity conditions. Luckily 
for us, one of the regularity conditions is Slater’s condition, and we just saw that it holds for 
SVMs. Because the primal problem we are trying to solve is a convex problem, the KKT 
conditions are also sufficient for the point to be primal and dual optimal, and there is zero 
duality gap. 
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To sum up, if a solution satisfies the KKT conditions, we are guaranteed that it is the 
optimal solution. 
   

The Karush-Kuhn-Tucker conditions are: 

• Stationarity condition: 

 

 

• Primal feasibility condition: 

 

• Dual feasibility condition: 

 

• Complementary slackness condition: 

 

 Note: “[...]Solving the SVM problem is equivalent to finding a solution to the KKT 
conditions.” (Burges, 1988) 

Note that we already saw most of these conditions before. Let us examine them one by one. 

Stationarity condition 

The stationarity condition tells us that the selected point must be a stationary point. It is a point 
where the function stops increasing or decreasing. When there is no constraint, the stationarity 
condition is just the point where the gradient of the objective function is zero. When we have 
constraints, we use the gradient of the Lagrangian. 

Primal feasibility condition 

Looking at this condition, you should recognize the constraints of the primal problem. It makes 
sense that they must be enforced to find the minimum of the function under constraints. 

Dual feasibility condition 

Similarly, this condition represents the constraints that must be respected for the dual problem.  
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Complementary slackness condition 

From the complementary slackness condition, we see that either   or .  

Support vectors are examples having a positive Lagrange multiplier. They are the ones for 
which the constraint  is active. (We say the constraint is active when 

).   

 Tip: From the complementary slackness condition, we see that support vectors are 
examples that have a positive Lagrange multiplier. 

What to do once we have the multipliers? 

When we solve the Wolfe dual problem, we get a vector  containing all Lagrange multipliers. 
However, when we first stated the primal problem, our goal was to find  and . Let us see how 
we can retrieve these values from the Lagrange multipliers. 

Compute w  

Computing  is pretty simple since we derived the formula:   from the gradient . 

Compute b  

Once we have , we can use one of the constraints of the primal problem to compute : 

 

Indeed, this constraint is still true because we transformed the original problem in such a way 
that the new formulations are equivalent. What it says is that the closest points to the 
hyperplane will have a functional margin of 1 (the value 1 is the value we chose when we 
decided how to scale ):  

 

From there, as we know all other variables, it is easy to come up with the value of . We multiply 

both sides of the equation by  , and because , it gives us: 

 

 

However, as indicated in Pattern Recognition and Machine Learning (Bishop, 2006), instead of 
taking a random support vector  , taking the average provides us with a numerically more 
stable solution: 
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where  is the number of support vectors. 

Other authors, such as (Cristianini & Shawe-Taylor, 2000) and (Ng), use another formula: 

 

They basically take the average of the nearest positive support vector and the nearest negative 
support vector. This latest formula is the one originally used by Statistical Learning Theory 
(Vapnik V. N., 1998) when defining the optimal hyperplane. 

Hypothesis function 

The SVMs use the same hypothesis function as the Perceptron. The class of an example  is 
given by:  

 

When using the dual formulation, it is computed using only the support vectors: 

 

Solving SVMs with a QP solver 

A QP solver is a program used to solve quadratic programming problems. In the following 
example, we will use the Python package called CVXOPT. 

This package provides a method that is able to solve quadratic problems of the form:  

 

It does not look like our optimization problem, so we will need to rewrite it so that we can solve it 
with this package.  

First, we note that in the case of the Wolfe dual optimization problem, what we are trying to 
minimize is , so we can rewrite the quadratic problem with  instead of  to better see how the 
two problems relate: 

http://cvxopt.org/
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Here the  symbol represents component-wise vector inequalities. It means that each row of the 
matrix  represents an inequality that must be satisfied. 

We will change the Wolfe dual problem. First, we transform the maximization problem: 

 

into a minimization problem by multiplying by -1. 

 

Then we introduce vectors  and  and the Gram matrix  of all 
possible dot products of vectors : 

 

We use them to construct a vectorized version of the Wolfe dual problem where  denotes the 
outer product of . 

 

We are now able to find out the value for each of the parameters , , , , , and   required by 
the CVXOPT qp function. This is demonstrated in Code Listing 24.  

Code Listing 24 

# See Appendix A for more information about the dataset 
from succinctly.datasets import get_dataset, linearly_separable as ls 
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import cvxopt.solvers 

 
X, y = get_dataset(ls.get_training_examples) 
m = X.shape[0]  
 
# Gram matrix - The matrix of all possible inner products of X. 
K = np.array([np.dot(X[i], X[j]) 
              for j in range(m) 
              for i in range(m)]).reshape((m, m)) 
 
P = cvxopt.matrix(np.outer(y, y) * K) 
q = cvxopt.matrix(-1 * np.ones(m)) 
 
# Equality constraints 
A = cvxopt.matrix(y, (1, m)) 
b = cvxopt.matrix(0.0) 
 
# Inequality constraints 
G = cvxopt.matrix(np.diag(-1 * np.ones(m))) 
h = cvxopt.matrix(np.zeros(m)) 
 
# Solve the problem 
solution = cvxopt.solvers.qp(P, q, G, h, A, b) 
 
# Lagrange multipliers 
multipliers = np.ravel(solution['x']) 
 
# Support vectors have positive multipliers. 
has_positive_multiplier = multipliers > 1e-7 
sv_multipliers = multipliers[has_positive_multiplier] 
 
support_vectors = X[has_positive_multiplier] 
support_vectors_y = y[has_positive_multiplier] 

Code Listing 24 initializes all the required parameters and passes them to the qp function, which 

returns us a solution. The solution contains many elements, but we are only concerned about 
the x, which, in our case, corresponds to the Lagrange multipliers. 

As we saw before, we can re-compute  using all the Lagrange multipliers: . Code 

Listing 25 shows the code of the function that computes .  

Code Listing 25 

def compute_w(multipliers, X, y): 
    return np.sum(multipliers[i] * y[i] * X[i] 
                  for i in range(len(y))) 
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Because Lagrange multipliers for non-support vectors are almost zero, we can also compute  
using only support vectors data and their multipliers, as illustrated in Code Listing 26.  

Code Listing 26 

w = compute_w(multipliers, X, y) 
w_from_sv = compute_w(sv_multipliers, support_vectors, support_vectors_y) 
 
print(w)          # [0.44444446 1.11111114] 
print(w_from_sv)  # [0.44444453 1.11111128] 

 

And we compute b using the average method: 

Code Listing 27 

def compute_b(w, X, y): 
    return np.sum([y[i] - np.dot(w, X[i])  
                   for i in range(len(X))])/len(X) 

 

Code Listing 28 

b = compute_b(w, support_vectors, support_vectors_y) # -9.666668268506335 

When we plot the result in Figure 32, we see that the hyperplane is the optimal hyperplane. 
Contrary to the Perceptron, the SVM will always return the same result.  

 

Figure 32: The hyperplane found with CVXOPT 
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This formulation of the SVM is called the hard margin SVM. It cannot work when the data is not 
linearly separable. There are several Support Vector Machines formulations. In the next 
chapter, we will consider another formulation called the soft margin SVM, which will be able to 
work when data is non-linearly separable because of outliers. 

Summary 

Minimizing the norm of  is a convex optimization problem, which can be solved using the 
Lagrange multipliers method. When there are more than a few examples, we prefer using 
convex optimization packages, which will do all the hard work for us. 

We saw that the original optimization problem can be rewritten using a Lagrangian function. 
Then, thanks to duality theory, we transformed the Lagrangian problem into the Wolfe dual 
problem. We eventually used the package CVXOPT to solve the Wolfe dual.  
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Chapter 5  Soft Margin SVM 

Dealing with noisy data 

The biggest issue with hard margin SVM is that it requires the data to be linearly separable. 
Real-life data is often noisy. Even when the data is linearly separable, a lot of things can happen 
before you feed it to your model. Maybe someone mistyped a value for an example, or maybe 
the probe of a sensor returned a crazy value. In the presence of an outlier (a data point that 
seems to be out of its group), there are two cases: the outlier can be closer to the other 
examples than most of the examples of its class, thus reducing the margin, or it can be among 
the other examples and break linear separability. Let us consider these two cases and see how 
the hard margin SVM deals with them.  

Outlier reducing the margin 

When the data is linearly separable, the hard margin classifier does not behave as we would 
like in the presence of outliers. 

Let us now consider our dataset with the addition of an outlier data point at (5, 7), as shown in 
Figure 33. 

 

Figure 33: The dataset is still linearly separable with the outlier at (5, 7) 

In this case, we can see that the margin is very narrow, and it seems that the outlier is the main 
reason for this change. Intuitively, we can see that this hyperplane might not be the best at 
separating the data, and that it will probably generalize poorly. 

Outlier breaking linear separability 

Even worse, when the outlier breaks the linear separability, as the point (7, 8) does in Figure 34, 
the classifier is incapable of finding a hyperplane. We are stuck because of a single data point. 
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Figure 34: The outlier at (7, 8) breaks linear separability 

Soft margin to the rescue 

Slack variables 

In 1995, Vapnik and Cortes introduced a modified version of the original SVM that allows the 
classifier to make some mistakes. The goal is now not to make zero classification mistakes, but 
to make as few mistakes as possible.  

To do so, they modified the constraints of the optimization problem by adding a variable  
(zeta). So the constraint: 

 

becomes: 

 

As a result, when minimizing the objective function, it is possible to satisfy the constraint even if 
the example does not meet the original constraint (that is, it is too close from the hyperplane, or 
it is not on the correct side of the hyperplane). This is illustrated in Code Listing 29. 

Code Listing 29 

import numpy as np 
 
w = np.array([0.4, 1]) 
b = -10 
 
x = np.array([6, 8]) 
y = -1 
 
 
def constraint(w, b, x, y): 
    return y * (np.dot(w, x) + b) 
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def hard_constraint_is_satisfied(w, b, x, y): 
    return constraint(w, b, x, y) >= 1 
 
 
def soft_constraint_is_satisfied(w, b, x, y, zeta): 
    return constraint(w, b, x, y) >= 1 - zeta 
 
 
# While the constraint is not satisfied for the example (6,8). 
print(hard_constraint_is_satisfied(w, b, x, y))               # False 
 
# We can use zeta = 2 and satisfy the soft constraint. 
print(soft_constraint_is_satisfied(w, b, x, y, zeta=2))       # True 

The problem is that we could choose a huge value of  for every example, and all the 
constraints will be satisfied.  

Code Listing 30 

# We can pick a huge zeta for every point 
# to always satisfy the soft constraint. 
print(soft_constraint_is_satisfied(w, b, x, y, zeta=10))   # True 
print(soft_constraint_is_satisfied(w, b, x, y, zeta=1000)) # True 

To avoid this, we need to modify the objective function to penalize the choice of a big : 

 

We take the sum of all individual  and add it to the objective function. Adding such a penalty is 
called regularization. As a result, the solution will be the hyperplane that maximizes the margin 
while having the smallest error possible. 

There is still a little problem. With this formulation, one can easily minimize the function by using 
negative values of . We add the constraint  to prevent this. Moreover, we would like to 
keep some control over the soft margin. Maybe sometimes we want to use the hard margin—
after all, that is why we add the parameter , which will help us to determine how important the 
 should be (more on that later).  

This leads us to the soft margin formulation: 
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As shown by (Vapnik V. N., 1998), using the same technique as for the separable case, we find 
that we need to maximize the same Wolfe dual as before, under a slightly different 
constraint: 

 

Here the constraint  has been changed to become . This constraint is often 
called the box constraint because the vector  is constrained to lie inside the box with side 
length  in the positive orthant. Note that an orthant is the analog n-dimensional Euclidean 
space of a quadrant in the plane (Cristianini & Shawe-Taylor, 2000). We will visualize the box 
constraint in Figure 50 in the chapter about the SMO algorithm. 

The optimization problem is also called 1-norm soft margin because we are minimizing the 1-
norm of the slack vector . 

Understanding what C does 

The parameter  gives you control of how the SVM will handle errors. Let us now examine how 
changing its value will give different hyperplanes. 

Figure 35 shows the linearly separable dataset we used throughout this book. On the left, we 
can see that setting  to  gives us the same result as the hard margin classifier. However, if 
we choose a smaller value for  like we did in the center, we can see that the hyperplane is 
closer to some points than others. The hard margin constraint is violated for these examples. 
Setting  increases this behavior as depicted on the right.  

What happens if we choose a  very close to zero? Then there is basically no constraint 
anymore, and we end up with a hyperplane not classifying anything.  

 

Figure 35: Effect of C=+Infinity, C=1, and C=0.01 on a linearly separable dataset 
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It seems that when the data is linearly separable, sticking with a big  is the best choice. But 
what if we have some noisy outlier? In this case, as we can see in Figure 36, using  
gives us a very narrow margin. However, when we use , we end up with a hyperplane very 
close to the one of the hard margin classifier without outlier. The only violated constraint is the 
constraint of the outlier, and we are much more satisfied with this hyperplane. This time, setting 

 ends up violating the constraint of another example, which was not an outlier. This 
value of  seems to give too much freedom to our soft margin classifier. 

 

Figure 36: Effect of C=+Infinity, C=1, and C=0.01 on a linearly separable dataset with an outlier 

Eventually, in the case where the outlier makes the data non-separable, we cannot use  
because there is no solution meeting all the hard margin constraints. Instead, we test several 
values of , and we see that the best hyperplane is achieved with . In fact, we get the 
same hyperplane for all values of  greater than or equal to 3. That is because no matter how 
hard we penalize it, it is necessary to violate the constraint of the outlier to be able to separate 
the data. When we use a small , as before, more constraints are violated. 

 

Figure 37: Effect of C=3, C=1, and C=0.01 on a non-separable dataset with an outlier 

Rules of thumb: 

• A small  will give a wider margin, at the cost of some misclassifications. 
• A huge  will give the hard margin classifier and tolerates zero constraint violation. 
• The key is to find the value of  such that noisy data does not impact the solution too 

much. 
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How to find the best C? 

There is no magic value for  that will work for all the problems. The recommended approach to 
select  is to use grid search with cross-validation (Hsu, Chang, & Lin, A Practical Guide to 
Support Vector Classification). The crucial thing to understand is that the value of  is very 
specific to the data you are using, so if one day you found that C=0.001 did not work for one of 
your problems, you should still try this value with another problem, because it will not have the 
same effect. 

Other soft-margin formulations 

2-Norm soft margin 

There is another formulation of the problem called the 2-norm (or L2 regularized) soft margin 

in which we minimize . This formulation leads to a Wolfe dual problem without 

the box constraint. For more information about the 2-norm soft margin, refer to (Cristianini & 
Shawe-Taylor, 2000). 

nu-SVM 

Because the scale of  is affected by the feature space, another formulation of the problem has 
been proposed:  the . The idea is to use a parameter  whose value is varied between 0 
and 1, instead of the parameter .  

 Note: “  gives a more transparent parametrization of the problem, which does not 
depend on the scaling of the feature space, but only on the noise level in the data.” 
(Cristianini & Shawe-Taylor, 2000) 

The optimization problem to solve is: 

 

http://scikit-learn.org/stable/modules/grid_search.html
http://scikit-learn.org/stable/modules/cross_validation.html
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Summary 

The soft-margin SVM formulation is a nice improvement over the hard-margin classifier. It 
allows us to classify data correctly even when there is noisy data that breaks linear separability. 
However, the cost of this added flexibility is that we now have an hyperparameter , for which 
we need to find a value. We saw how changing the value of  impacts the margin and allows 
the classifier to make some mistakes in order to have a bigger margin. This once again reminds 
us that our goal is to find a hypothesis that will work well on unseen data. A few mistakes on the 
training data is not a bad thing if the model generalizes well in the end. 
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Chapter 6  Kernels 

Feature transformations 

Can we classify non-linearly separable data? 

Imagine you have some data that is not separable (like the one in Figure 38), and you would like 
to use SVMs to classify it. We have seen that it is not possible because the data is not linearly 
separable. However, this last assumption is not correct. What is important to notice here is that 
the data is not linearly separable in two dimensions. 

 

Figure 38: A straight line cannot separate the data 

Even if your original data is in two dimensions, nothing prevents you from transforming it before 
feeding it into the SVM. One possible transformation would be, for instance, to transform every 
two-dimensional vector  into a three-dimensional vector. 

For example, we can do what is called a polynomial mapping by applying the function 

 defined by: 

 

Code Listing 31 shows this transformation implemented in Python.  

Code Listing 31 

# Transform a two-dimensional vector x into a three-dimensional vector. 
def transform(x): 
    return [x[0]**2, np.sqrt(2)*x[0]*x[1], x[1]**2] 

If you transform the whole data set of Figure 38 and plot the result, you get Figure 39, which 
does not show much improvement. However, after some time playing with the graph, we can 
see that the data is, in fact, separable in three dimensions (Figure 40 and Figure 41)!  
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Figure 39: The data does not look separable in three dimensions 

 

Figure 40: The data is, in fact, separable by a plane 

 

Figure 41: Another view of the data showing the plane from the side 
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Here is a basic recipe we can use to classify this dataset: 

1. Transform every two-dimensional vector into a three-dimensional vector using the 
transform method of Code Listing 31. 

2. Train the SVMs using the 3D dataset. 
3. For each new example we wish to predict, transform it using the transform method 

before passing it to the predict method. 

Of course, you are not forced to transform the data into three dimensions; it could be five, ten, 
or one hundred dimensions. 

How do we know which transformation to apply? 

Choosing which transformation to apply depends a lot on your dataset. Being able to transform 
the data so that the machine learning algorithm you wish to use performs at its best is probably 
one key factor of success in the machine learning world. Unfortunately, there is no perfect 
recipe, and it will come with experience via trial and error. Before using any algorithm, be sure 
to check if there are some common rules to transform the data detailed in the documentation. 
For more information about how to prepare your data, you can read the dataset transformation 
section on the scikit-learn website.  

What is a kernel? 

In the last section, we saw a quick recipe to use on the non-separable dataset. One of its main 
drawbacks is that we must transform every example. If we have millions or billions of examples 
and that transform method is complex, that can take a huge amount of time. This is when 
kernels come to the rescue. 
 
If you recall, when we search for the KKT multipliers in the Wolfe dual Lagrangian function, we 
do not need the value of a training example ; we only need the value of the dot product    

between two training examples:  

 

In Code Listing 32, we apply the first step of our recipe. Imagine that when the data is used to 
learn, the only thing we care about is the value returned by the dot product, in this example 
8,100. 

Code Listing 32 

x1 = [3,6] 
x2 = [10,10] 
 
x1_3d = transform(x1) 
x2_3d = transform(x2) 

http://scikit-learn.org/stable/data_transforms.html
http://scikit-learn.org/stable/data_transforms.html


 75 

 
print(np.dot(x1_3d,x2_3d))  # 8100 

The question is this: Is there a way to compute this value, without transforming the 
vectors? 

And the answer is: Yes, with a kernel!  

Let us consider the function in Code Listing 33:  

Code Listing 33 

def polynomial_kernel(a, b): 
    return a[0]**2 * b[0]**2 + 2*a[0]*b[0]*a[1]*b[1] + a[1]**2 * b[1]**2 

Using this function with the same two examples as before returns the same result (Code Listing 
33). 

Code Listing 34 

x1 = [3,6] 
x2 = [10,10] 
 
# We do not transform the data. 
 
print(polynomial_kernel(x1, x2)) # 8100  

When you think about it, this is pretty incredible.  

The vectors  and  belong to  . The kernel function computes their dot product as if they 

have been transformed into vectors belonging to , and it does that without doing the 
transformation, and without computing their dot product!  

To sum up: a kernel is a function that returns the result of a dot product performed in another 
space. More formally, we can write: 

Definition: Given a mapping function  , we call the function  defined by 

 ,  where    denotes an inner product in , a kernel function. 

The kernel trick 

Now that we know what a kernel is, we will see what the kernel trick is. 

If we define a kernel as:  , we can then rewrite the soft-margin dual problem:  
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That’s it. We have made a single change to the dual problem—we call it the kernel trick. 

 Tip: Applying the kernel trick simply means replacing the dot product of two 
examples by a kernel function. 

This change looks very simple, but remember that it took a serious amount of work to derive the 
Wolf dual formulation from the original optimization problem. We now have the power to change 
the kernel function in order to classify non-separable data. 

Of course, we also need to change the hypothesis function to use the kernel function:  

 

Remember that in this formula  is the set of support vectors. Looking at this formula, we better 
understand why SVMs are also called sparse kernel machines. It is because they only need to 
compute the kernel function on the support vectors and not on all the vectors, like other kernel 
methods (Bishop, 2006).  

Kernel types 

Linear kernel 

This is the simplest kernel. It is simply defined by: 

 

where  and  are two vectors.  

In practice, you should know that a linear kernel works well for text classification. 

Polynomial kernel 

We already saw the polynomial kernel earlier when we introduced kernels, but this time we will 
consider the more generic version of the kernel: 

 

http://www.svm-tutorial.com/2014/10/svm-linear-kernel-good-text-classification/
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It has two parameters: , which represents a constant term, and , which represents the degree 
of the kernel. This kernel can be implemented easily in Python, as shown in Code Listing 35.  

Code Listing 35 

def polynomial_kernel(a, b, degree, constant=0): 

    result = sum([a[i] * b[i] for i in range(len(a))]) + constant 

    return pow(result, degree) 

In Code Listing 36, we see that it returns the same result as the kernel of Code Listing 33 when 
we use the degree 2. The result of training a SVM with this kernel is shown in Figure 42. 

Code Listing 36 

x1 = [3,6] 

x2 = [10,10] 

# We do not transform the data. 

 

print(polynomial_kernel(x1, x2, degree=2)) # 8100 

 

Figure 42: A SVM using a polynomial kernel is able to separate the data (degree=2) 

Updating the degree 

A polynomial kernel with a degree of 1 and no constant is simply the linear kernel (Figure 43). 
When you increase the degree of a polynomial kernel, the decision boundary will become more 
complex and will have a tendency to be influenced by individual data examples, as illustrated in 
Figure 44. Using a high-degree polynomial is dangerous because you can often achieve better 
performance on your test set, but it leads to what is called overfitting: the model is too close to 
the data and does not generalize well.  
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Figure 43: A polynomial kernel with degree = 1 

 

Figure 44: A polynomial kernel with degree = 6 

 

 Note: Using a high-degree polynomial kernel will often lead to overfitting. 

RBF or Gaussian kernel 

Sometimes polynomial kernels are not sophisticated enough to work. When you have a difficult 
dataset like the one depicted in Figure 45, this type of kernel will show its limitation. 

 

Figure 45: This dataset is more difficult to work with 

As we can see in Figure 46, the decision boundary is very bad at classifying the data. 
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Figure 46: A polynomial kernel is not able to separate the data (degree=3, C=100) 

This case calls for us to use another, more complicated, kernel: the Gaussian kernel. It is also 
named RBF kernel, where RBF stands for Radial Basis Function. A radial basis function is a 
function whose value depends only on the distance from the origin or from some point. 

The RBF kernel function is: 

 

You will often read that it projects vectors into an infinite dimensional space. What does this 

mean? 

Recall this definition: a kernel is a function that returns the result of a dot product performed in 
another space.  
 
In the case of the polynomial kernel example we saw earlier, the kernel returned the result of a 

dot product performed in . As it turns out, the RBF kernel returns the result of a dot product 
performed in . 
 
I will not go into details here, but if you wish, you can read this proof to better understand how 
we came to this conclusion.  

http://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/svms/RBFKernel.pdf
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Figure 47: The RBF kernel classifies the data correctly with gamma = 0.1 

This video is particularly useful to understand how the RBF kernel is able to separate the data. 

Changing the value of gamma 

 

Figure 48: A Gaussian kernel with gamma = 1e-5 

 

Figure 49: A Gaussian kernel with gamma = 2 

When gamma is too small, as in Figure 48, the model behaves like a linear SVM. When gamma 
is too large, the model is too heavily influenced by each support vector, as shown in Figure 49. 
For more information about gamma, you can read this scikit-learn documentation page. 

Other types 

Research on kernels has been prolific, and there are now a lot of kernels available. Some of 
them are specific to a domain, such as the string kernel, which can be used when working with 
text. If you want to discover more kernels, this article from César Souza describes 25 kernels. 

https://www.youtube.com/watch?v=3liCbRZPrZA
http://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
https://en.wikipedia.org/wiki/String_kernel
http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/
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Which kernel should I use? 

The recommended approach is to try a RBF kernel first, because it usually works well. However, 
it is good to try the other types of kernels if you have enough time to do so. A kernel is a 
measure of the similarity between two vectors, so that is where domain knowledge of the 
problem at hand may have the biggest impact. Building a custom kernel can also be a 
possibility, but it requires that you have a good mathematical understanding of the theory behind 
kernels. You can find more information on this subject in (Cristianini & Shawe-Taylor, 2000). 

Summary 

The kernel trick is one key component making Support Vector Machines powerful. It allows us to 
apply SVMs on a wide variety of problems. In this chapter, we saw the limitations of the linear 
kernel, and how a polynomial kernel can classify non-separable data. Eventually, we saw one of 
the most used and most powerful kernels: the RBF kernel. Do not forget that there are many 
kernels, and try looking for kernels created to solve the kind of problems you are trying to solve. 
Using the right kernel with the right dataset is one key element in your success or failure with 
SVMs.  
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Chapter 7  The SMO Algorithm 

We saw how to solve the SVM optimization problem using a convex optimization package. 
However, in practice, we will use an algorithm specifically created to solve this problem quickly: 
the SMO (sequential minimal optimization) algorithm. Most machine learning libraries use 
the SMO algorithm or some variation. 

The SMO algorithm will solve the following optimization problem: 

  

It is a kernelized version of the soft-margin formulation we saw in Chapter 5. The objective 
function we are trying to minimize can be written in Python (Code Listing 37): 

Code Listing 37 

def kernel(x1, x2): 
    return np.dot(x1, x2.T) 

 
def objective_function_to_minimize(X, y, a, kernel): 

    m, n = np.shape(X) 

    return 1 / 2 * np.sum([a[i] * a[j] * y[i] * y[j]* kernel(X[i, :], X[j, :]) 

                           for j in range(m) 

                           for i in range(m)])\ 
           - np.sum([a[i] for i in range(m)]) 

This is the same problem we solved using CVXOPT. Why do we need another method? 
Because we would like to be able to use SVMs with big datasets, and using convex optimization 
packages usually involves matrix operations that take a lot of time as the size of the matrix 
increases or become impossible because of memory limitations. The SMO algorithm has been 
created with the goal of being faster than other methods.  
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The idea behind SMO 

When we try to solve the SVM optimization problem, we are free to change the values of  as 
long as we respect the constraints. Our goal is to modify  so that in the end, the objective 
function returns the smallest possible value. In this context, given a vector  of 
Lagrange multipliers, we can change the value of any  until we reach our goal.  
 
The idea behind SMO is quite easy: we will solve a simpler problem. That is, given a vector 

, we will allow ourselves to change only two values of , for instance,  and 
. We will change them until the objective function reaches its minimum given this set of 

alphas. Then we will pick two other alphas and change them until the function returns its 
smallest value, and so on. If we continue doing that, we will eventually reach the minimum of the 
objective function of the original problem. 

SMO solves a sequence of several simpler optimization problems.  

How did we get to SMO? 

This idea of solving several simpler optimization problems is not new. In 1982, Vapnik proposed 
a method known as “chunking,” which breaks the original problem down into a series of smaller 
problems (Vapnik V. , 1982). What made things change is that in 1997, Osuna, et al., proved 
that solving a sequence of sub-problems will be guaranteed to converge as long as we add at 
least one example violating the KKT conditions (Osuna, Freund, & Girosi, 1997). 

Using this result, one year later, in 1998, Platt proposed the SMO algorithm.  

Why is SMO faster? 

The great advantage of the SMO approach is that we do not need a QP solver to solve the 
problem for two Lagrange multipliers—it can be solved analytically. As a consequence, it does 
not need to store a huge matrix, which can cause problems with machine memory. Moreover, 
SMO uses several heuristics to speed up the computation. 

The SMO algorithm 

The SMO algorithm is composed of three parts: 

• One heuristic to choose the first Lagrange multiplier 
• One heuristic to choose the second Lagrange multiplier 
• The code to solve the optimization problem analytically for the two chosen multipliers 
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 Tip: A Python implementation of the algorithm is available in Appendix B: The 
SMO Algorithm. All code listings in this section are taken from this appendix and do 
not work alone. 

The analytical solution 

At the beginning of the algorithm, we start with a vector  in which 
. The idea is to pick two elements of this vector, which we will name  

and , and to change their values so that the constraints are still respected. 

The first constraint    means that   and . That 

is why we are forced to select a value lying in the blue box of Figure 50 (which displays an 
example where ). 

The second constraint is a linear constraint . It forces the values to lie on the red 

diagonal, and the first couple of selected  and  should have different labels ( ). 

 

Figure 50: The feasible set is the diagonal of the box 

In general, to avoid breaking the linear constraint, we must change the multipliers so that:   

   

We will not go into the details of how the problem is solved analytically, as it is done very well in 
(Cristianini & Shawe-Taylor, 2000) and in (Platt J. C., 1998).  
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Remember that there is a formula to compute the new  :  

 

with    being the difference between the output of the hypothesis function and the 

example label.  is the kernel function. We also compute bounds, which applies to ; it 
cannot be smaller than the lower bound, or larger than the upper bound, or constraints will be 

violated. So  is clipped if this is the case. 

Once we have this new value, we use it to compute the new  using this formula: 

 

Understanding the first heuristic  

The idea behind the first heuristic is pretty simple: each time SMO examines an example, it 
checks whether or not the KKT conditions are violated. Recall that at least one KKT condition 
must be violated. If the conditions are met, then it tries another example. So if there are millions 
of examples, and only a few of them violate the KKT conditions, it will spend a lot of time 
examining useless examples. In order to avoid that, the algorithm concentrates its time on 
examples in which the Lagrange multiplier is not equal to 0 or , because they are the most 
likely to violate the conditions (Code Listing 38).  

Code Listing 38 

def get_non_bound_indexes(self): 
    return np.where(np.logical_and(self.alphas > 0, 
                                   self.alphas < self.C))[0] 
 
# First heuristic: loop  over examples where alpha is not 0 and not C 
# they are the most likely to violate the KKT conditions 
# (the non-bound subset). 
def first_heuristic(self): 
    num_changed = 0 
    non_bound_idx = self.get_non_bound_indexes() 
 
    for i in non_bound_idx: 
        num_changed += self.examine_example(i) 
    return num_changed 

Because solving the problem analytically involves two Lagrange multipliers, it is possible that a 
bound multiplier (whose value is between 0 and ) has become KKT-violated. That is why the 
main routine alternates between all examples and the non-bound subset (Code Listing 39). Note 
that the algorithm finishes when progress is no longer made.  
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Code Listing 39 

def main_routine(self): 
    num_changed = 0 
    examine_all = True 
 
    while num_changed > 0 or examine_all: 
        num_changed = 0 
 
        if examine_all: 
            for i in range(self.m): 
                num_changed += self.examine_example(i) 
        else: 
            num_changed += self.first_heuristic() 
 
        if examine_all: 
            examine_all = False 
        elif num_changed == 0: 
            examine_all = True 

Understanding the second heuristic  

The goal of this second heuristic is to select the Lagrange multiplier for which the step taken will 
be maximal. 

How do we update  ? We use the following formula: 

 

Remember that in this case that we have already chosen the value . Our goal is to pick the  

whose will have the biggest change. This formula can be rewritten as follows:  

 

with: 

 

So, to pick the best  amongst several , we need to compute the value of step for each  
and select the one with the biggest step. The problem here is that we need to call the kernel 
function  three times for each step, and this is costly. Instead of doing that, Platt came with the 
following approximation: 

 

As a result, selecting the biggest step is done by taking the  with the smallest error if  is 
positive, and the  with the biggest error if  is negative.  
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This approximation is visible in the method second_heuristic of Code Listing 40.  

Code Listing 40 

def second_heuristic(self, non_bound_indices): 
    i1 = -1 
    if len(non_bound_indices) > 1: 
    max = 0 
 
    for j in non_bound_indices: 
        E1 = self.errors[j] - self.y[j] 
        step = abs(E1 - self.E2) # approximation 
        if step > max: 
            max = step 
            i1 = j 
    return i1 
 
def examine_example(self, i2): 
    self.y2 = self.y[i2] 
    self.a2 = self.alphas[i2] 
    self.X2 = self.X[i2] 
    self.E2 = self.get_error(i2) 
 
    r2 = self.E2 * self.y2 
 
    if not((r2 < -self.tol and self.a2 < self.C) or  
           (r2 > self.tol and self.a2 > 0)): 
        # The KKT conditions are met, SMO looks at another example. 
        return 0 
 
    # Second heuristic A: choose the Lagrange multiplier that 
    # maximizes the absolute error. 
    non_bound_idx = list(self.get_non_bound_indexes()) 
    i1 = self.second_heuristic(non_bound_idx) 
 
    if i1 >= 0 and self.take_step(i1, i2): 
        return 1 
 
    # Second heuristic B: Look for examples making positive  
    # progress by looping over all non-zero and non-C alpha,  
    # starting at a random point. 
    if len(non_bound_idx) > 0: 
        rand_i = randrange(len(non_bound_idx)) 
        for i1 in non_b ound_idx[rand_i:] + non_bound_idx[:rand_i]: 
            if self.take_step(i1, i2): 
                return 1 
 
    # Second heuristic C: Look for examples making positive progress 
    # by looping over all possible examples, starting at a random  
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    # point. 
    rand_i = randrange(self.m) 
    all_indices = list(range(self.m)) 
    for i1 in all_indices[rand_i:] + all_indices[:rand_i]: 
        if self.take_step(i1, i2): 
        return 1 
 
    # Extremely degenerate circumstances, SMO skips the first example. 
    return 0 

Summary 

Understanding the SMO algorithm can be tricky because a lot of the code is here for 
performance reasons, or to handle specific degenerate cases. However, at its core, the 
algorithm remains simple and is faster than convex optimization solvers. Over time, people have 
discovered new heuristics to improve this algorithm, and popular libraries like LIBSVM use an 
SMO-like algorithm. Note that even if this is the standard way of solving the SVM problem, other 
methods exist, such as gradient descent and stochastic gradient descent (SGD), which is 
particularly used for online learning and dealing with huge datasets.  

Knowing how the SMO algorithm works will help you decide if it is the best method for the 
problem you want to solve. I strongly advise you to try implementing it yourself. In the Stanford 
CS229 course, you can find the description of a simplified version of the algorithm, which is a 
good start. Then, in Sequential Minimal Optimization (Platt J. C., 1998), you can read the full 
description of the algorithm. The Python code available in Appendix B has been written from the 
pseudo-code from this paper and indicates in comments which parts of the code correspond to 
which equations in the paper. 

http://cs229.stanford.edu/materials/smo.pdf
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Chapter 8  Multi-Class SVMs 

SVMs are able to generate binary classifiers. However, we are often faced with datasets having 
more than two classes. For instance, the original wine dataset actually contains data from three 
different producers. There are several approaches that allow SVMs to work for multi-class 
classification. In this chapter, we will review some of the most popular multi-class methods and 
explain where they come from. 

For all code examples in this chapter, we will use the dataset generated by Code Listing 41 and 
displayed in Figure 51. 

Code Listing 41 

import numpy as np 
 
def load_X(): 
    return np.array([[1, 6], [1, 7], [2, 5], [2, 8], 
                     [4, 2], [4, 3], [5, 1], [5, 2], 
                     [5, 3], [6, 1], [6, 2], [9, 4], 
                     [9, 7], [10, 5], [10, 6], [11, 6], 
                     [5, 9], [5, 10], [5, 11], [6, 9], 
                     [6, 10], [7, 10], [8, 11]]) 
 
 
def load_y(): 
    return np.array([1, 1, 1, 1, 
                     2, 2, 2, 2, 2, 2, 2, 
                     3, 3, 3, 3, 3, 
                     4, 4, 4, 4, 4, 4, 4]) 

 

Figure 51: A four classes classification problem 
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Solving multiple binary problems 

One-against-all 

Also called “one-versus-the-rest,” this is probably the simplest approach.  
 
In order to classify K classes, we construct K different binary classifiers. For a given class, the 
positive examples are all the points in the class, and the negative examples are all the points 
not in the class (Code Listing 42). 

Code Listing 42 

import numpy as np 
from sklearn import svm 

 

# Create a simple dataset 

X = load_X() 
y = load_y() 
 
 
# Transform the 4 classes problem 
# in 4 binary classes problems. 
y_1 = np.where(y == 1, 1, -1) 
y_2 = np.where(y == 2, 1, -1) 
y_3 = np.where(y == 3, 1, -1) 
y_4 = np.where(y == 4, 1, -1) 

 
We train one binary classifier on each problem (Code Listing 43). As a result, we obtain one 
decision boundary per classifier (in Figure 52). 

Code Listing 43 

# Train one binary classifier on each problem. 
y_list = [y_1, y_2, y_3, y_4] 

classifiers = [] 

for y_i in y_list: 

    clf = svm.SVC(kernel='linear', C=1000) 
    clf.fit(X, y_i) 

    classifiers.append(clf) 
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Figure 52: The One-against-all approach creates one classifier per class 

In order to make a new prediction, we use each classifier and predict the class of the classifier if 
it returns a positive answer (Code Listing 44). However, this can give inconsistent results 
because a label is assigned to multiple classes simultaneously or to none (Bishop, 2006). 
Figure  illustrates this problem; the one-against-all classifier is not able to predict a class for the 
examples in the blue areas in each corner because two classifiers are making a positive 
prediction. This would result in the example having two class simultaneously. The same 
problem occurs in the center because each classifier makes a negative prediction. As a result, 
no class can be assigned to an example in this region. 

Code Listing 44 

def predict_class(X, classifiers): 
    predictions = np.zeros((X.shape[0], len(classifiers))) 
    for idx, clf in enumerate(classifiers): 
        predictions[:, idx] = clf.predict(X) 
 
    # returns the class number if only one classifier predicted it 
    # returns zero otherwise. 
    return np.where((predictions == 1).sum(1) == 1, 
                    (predictions == 1).argmax(axis=1) + 1, 
                    0) 
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Figure 53: One-against-all leads to ambiguous decisions 

As an alternative solution, Vladimir Vapnik suggested using the class of the classifier for which 
the value of the decision function is the maximum (Vapnik V. N., 1998). This is demonstrated in 
Code Listing 45. Note that we use the decision_function instead of calling the predict 

method of the classifier. This method returns a real value that will be positive if the example is 
on the correct side of the classifier, and negative if it is on the other side. It is interesting to note 
that by taking the maximum of the value, and not the maximum of the absolute value, this 
approach will choose the class of the hyperplane the closest to the example when all classifiers 
disagree. For instance, the example point (6,4) in Figure  will be assigned the blue star class.  

Code Listing 45 

def predict_class(X, classifiers): 
    predictions = np.zeros((X.shape[0], len(classifiers))) 
    for idx, clf in enumerate(classifiers): 
        predictions[:, idx] = clf.decision_function(X) 
 
    # return the argmax of the decision function as suggested by Vapnik. 
    return np.argmax(predictions, axis=1) + 1 

Applying this heuristic gives us classification results with no ambiguity, as shown in Figure . The 
major flaw of this approach is that the different classifiers were trained on different tasks, so 
there is no guarantee that the quantities returned by the decision_function have the same 

scale (Bishop, 2006). If one decision function returns a result ten times bigger than results of the 
others, its class will be assigned incorrectly to some examples.  
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Figure 54: Applying a simple heuristic avoids the ambiguous decision problem 

Another issue with the one-against-all approach is that training sets are imbalanced (Bishop, 
2006). For a problem with 100 classes, each having 10 examples, each classifier will be trained 
with 10 positive examples and 990 negative examples. Thus, the negative examples will 
influence the decision boundary greatly. 

Nevertheless, one-against-all remains a popular method for multi-class classification because it 
is easy to implement and understand.  

 Note: “[...] In practice the one-versus-the-rest approach is the most widely used in 
spite of its ad-hoc formulation and its practical limitations.” (Bishop, 2006) 

When using sklearn, LinearSVC automatically uses the one-against-all strategy by default. 

You can also specify it explicitly by setting the multi_class parameter to ovr (one-vs-the-rest), 

as shown in Code Listing 46. 

Code Listing 46 

from sklearn.svm import LinearSVC 
import numpy as np 
 
X = load_X() 
y = load_y() 
 
clf = LinearSVC(C=1000, random_state=88, multi_class='ovr') 
clf.fit(X,y) 
 
# Make predictions on two examples. 
X_to_predict = np.array([[5,5],[2,5]]) 
print(clf.predict(X_to_predict)) # prints [2 1] 
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One-against-one 

In this approach, instead of trying to distinguish one class from all the others, we seek to 
distinguish one class from another one. As a result, we train one classifier per pair of classes, 
which leads to K(K-1)/2 classifiers for K classes. Each classifier is trained on a subset of the 
data and produces its own decision boundary (Figure ).  
 
Predictions are made using a simple voting strategy. Each example we wish to predict is 
passed to each classifier, and the predicted class is recorded. Then, the class having the most 
votes is assigned to the example (Code Listing 47). 

Code Listing 47 

from itertools import combinations 
from scipy.stats import mode 
from sklearn import svm 
import numpy as np 
 
# Predict the class having the max number of votes. 
def predict_class(X, classifiers, class_pairs): 
    predictions = np.zeros((X.shape[0], len(classifiers))) 
    for idx, clf in enumerate(classifiers): 
        class_pair = class_pairs[idx] 
        prediction = clf.predict(X) 
        predictions[:, idx] = np.where(prediction == 1,  
                                       class_pair[0], class_pair[1]) 
    return mode(predictions, axis=1)[0].ravel().astype(int) 
 
X = load_X() 
y = load_y() 
 
# Create datasets. 
training_data = [] 
class_pairs = list(combinations(set(y), 2)) 
for class_pair in class_pairs: 
    class_mask = np.where((y == class_pair[0]) | (y == class_pair[1])) 
    y_i = np.where(y[class_mask] == class_pair[0], 1, -1) 
    training_data.append((X[class_mask], y_i)) 
 
# Train one classifier per class. 
classifiers = [] 
for data in training_data: 
    clf = svm.SVC(kernel='linear', C=1000) 
    clf.fit(data[0], data[1]) 
    classifiers.append(clf) 
 
# Make predictions on two examples. 
X_to_predict = np.array([[5,5],[2,5]]) 
print(predict_class(X_to_predict, classifiers, class_pairs))  
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# prints [2 1] 

 

Figure 55: One-against-one construct with one classifier for each pair of classes 

With this approach, we are still faced with the ambiguous classification problem. If two classes 
have an identical number of votes, it has been suggested that selecting the one with the smaller 
index might be a viable (while probably not the best) strategy (Hsu & Lin, A Comparison of 
Methods for Multi-class Support Vector Machines, 2002). 

 

Figure 56: Predictions are made using a voting scheme 

Figure  shows us that the decision regions generated by the one-against-one strategy are 
different from the ones generated by one-against-all (Figure ). In Figure , it is interesting to note 
that for regions generated by the one-against-one classifier, a region changes its color only after 
traversing a hyperplane (denoted by black lines), while this is not the case with one-against-all. 
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Figure 57: Comparison of one-against-all (left) and one-against-one (right) 

The one-against-one approach is the default approach for multi-class classification used in 
sklearn. Instead of Code Listing 47, you will obtain the exact same results using the code of 

Code Listing 48.  

Code Listing 48 

from sklearn import svm 
import numpy as np 
 
X = load_X() 
y = load_y() 
 
# Train a multi-class classifier. 
clf = svm.SVC(kernel='linear', C=1000) 
clf.fit(X,y) 
 
# Make predictions on two examples. 
X_to_predict = np.array([[5,5],[2,5]]) 
print(clf.predict(X_to_predict)) # prints [2 1] 

One of the main drawbacks of the one-against-all method is that the classifier will tend to overfit. 
Moreover, the size of the classifier grows super-linearly with the number of classes, so this 
method will be slow for large problems (Platt, Cristianini, & Shawe-Taylor, 2000).  

DAGSVM 

DAGSVM stands for “Directed Acyclic Graph SVM.” It has been proposed by John Platt et al. in 
2000 as an improvement of one-against-one (Platt, Cristianini, & Shawe-Taylor, 2000). 
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 Note: John C. Platt invented the SMO algorithm and Platt Scaling, and proposed 
the DAGSVM. Quite a contribution to the SVMs world! 

The idea behind DAGSVM is to use the same training as one-against-one, but to speed up 
testing by using a directed acyclic graph (DAG) to choose which classifiers to use.  
 
If we have four classes A, B, C, and D, and six classifiers trained each on a pair of classes: (A, 
B); (A, C); (A, D); (B, C); (B, D); and (C, D). We use the first classifier, (A, D), and it predicts 
class A, which is the same as predicting not class D, and the second classifier also predits 
class A (not class C). It means that classifiers (B, D), (B, C) or (C, D) can be ignored because 
we already know the class is neither C nor D. The last “useful” classifier is (A, B), and if it 
predicts B, we assign the class B to the data-point. This example is illustrated with the red path 
in Figure . Each node of the graph is a classifier for a pair of class. 

 

Figure 58: Illustration of the path used to make a prediction along a Directed Acyclic graph 

With four classes, we used three classifiers to make the prediction, instead of six with one-
against-one. In general, for a problem with K classes, K-1 decision nodes will be evaluated. 

Substituting the predict_class function in Code Listing 47 with the one in Code Listing 49 

gives the same result, but with the benefit of using fewer classifiers.  
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In Code Listing 49, we implement the DAGSVM approach with a list. We begin with the list of 
possible classes, and after each prediction, we remove the one that has been disqualified. In 
the end, the remaining class is the one which should be assigned to the example.  

Note that Code Listing 49 is here for illustration purposes and should not be used in your 
production code, as it is not fast when the dataset (X) is large.  

Code Listing 49 

def predict_class(X, classifiers, distinct_classes, class_pairs): 
    results = [] 
    for x_row in X: 
         
        class_list = list(distinct_classes) 
         
        # After each prediction, delete the rejected class  
        # until there is only one class. 
        while len(class_list) > 1: 
            # We start with the pair of the first and  
            # last element in the list. 
            class_pair = (class_list[0], class_list[-1]) 
            classifier_index = class_pairs.index(class_pair)  
            y_pred = classifiers[classifier_index].predict(x_row) 
             
            if y_pred == 1: 
                class_to_delete = class_pair[1] 
            else: 
                class_to_delete = class_pair[0] 
 
            class_list.remove(class_to_delete) 
             
        results.append(class_list[0]) 
    return np.array(results) 

 Note: “The DAGSVM is between a factor 1.6 and 2.3 times faster to evaluate than 
Max Wins.” (Platt, Cristianini, & Shawe-Taylor, 2000). 

Solving a single optimization problem 

Instead of trying to solve several binary optimization problems, another approach is to try to 
solve a single optimization problem. This approach has been proposed by several people over 
the years. 
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Vapnik, Weston, and Watkins 

This method is a generalization of the SVMs optimization problem to solve the multi-class 
classification problem directly. It has been independently discovered by Vapnik (Vapnik V. N., 
1998) and Weston & Watkins (Weston & Watkins, 1999). For every class, constraints are added 
to the optimization problem. As a result, the size of the problem is proportional to the number of 
classes and can be very slow to train.  

Crammer and Singer 

Crammer and Singer (C&S) proposed an alternative approach to multi-class SVMs. Like 
Weston and Watkins, they solve a single optimization problem, but with fewer slack variables 
(Crammer & Singer, 2001). This has the benefit of reducing the memory and training time. 
However, in their comparative study, Hsu & Lin found that the C&S method was especially slow 
when using a large value for the C regularization parameter (Hsu & Lin, A Comparison of 
Methods for Multi-class Support Vector Machines, 2002).  

In sklearn, when using LinearSVC you can choose to use the C&S algorithm (Code Listing 

50). In Figure , we can see that the C&S predictions are different from the one-against-all and 
the one-against-one methods.  

Code Listing 50 

from sklearn import svm 
import numpy as np 
 
X = load_X() 
y = load_y() 
 
clf = svm.LinearSVC(C=1000, multi_class='crammer_singer') 
clf.fit(X,y) 
 
# Make predictions on two examples. 
X_to_predict = np.array([[5,5],[2,5]]) 
print(clf.predict(X_to_predict)) # prints [4 1] 
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Figure 59: Crammer & Singer algorithm predictions 

Which approach should you use? 

With so many options available, choosing which multi-class approach is better suited for your 
problem can be difficult.  

Hsu and Lin wrote an interesting paper comparing the different multi-class approaches available 
for SVMs (Hsu & Lin, A Comparison of Methods for Multi-class Support Vector Machines, 2002). 
They conclude that “the one-against-one and DAG methods are more suitable for practical use 
than the other methods.” The one-against-one method has the added advantage of being 
already available in sklearn, so it should probably be your default choice.  

 
Be sure to remember that LinearSVC uses the one-against-all method by default, and that 

maybe using the Crammer & Singer algorithm will better help you achieve your goal. On this 
topic, Dogan et al. found that despite being considerably faster than other algorithms, one-
against-all yield hypotheses with a statistically significantly worse accuracy (Dogan, 
Glasmachers, & Igel, 2011). Table 1 provides an overview of the methods presented in this 
chapter to help you make a choice. 
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Table 1: Overview of multi-class SVM methods 

Method 
name 

One-
against-all 

One-
against-one 

Weston and 
Watkins 

DAGSVM Crammer 
and Singer 

First 
SVMs 
usage 

1995 1996 1999 2000 2001 

Approach Use several 
binary 
classifiers 

Use several 
binary 
classifiers 

Solve a 
single 
optimization 
problem 

Use several 
binary 
classifiers 

Solve a 
single 
optimization 
problem 

Training 
approach 

Train a 
single 
classifier for 
each class 

Train a 
classifier for 
each pair of 
classes 

Decomposition 
method 

Same as 
one-
against-one 

Decomposition 
method 

Number 
of trained 
classifiers 

(  is the 
number of 
classes) 

 
 

1 
 

1 

Testing 
approach 

Select the 
class with 
the biggest 
decision 
function 
value  

“Max-Wins” 
voting 
strategy 

Use the 
classifier 

Use a DAG 
to make 
predictions 
on K-1 
classifiers 

Use the 
classifier 

scikit-
learn 
class 

LinearSVC SVC Not available Not 
available 

LinearSVC 

Drawbacks Class 
imbalance 

Long 
training 
time for 
large K 

Long training 
time 

Not 
available in 
popular 
libraries 

Long training 
time 
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Summary 

Thanks to many improvements over the years, there are now several methods for doing multi-
class classification with SVMs. Each approach has advantages and drawbacks, and most of the 
time you will end up using the one available in the library you are using. However, if necessary, 
you now know which method can be more helpful to solve your specific problem. 

Research on multi-class SVMs is not over. Recent papers on the subject have been focused on 
distributed training. For instance, Han & Berg have presented a new algorithm called 
“Distributed Consensus Multiclass SVM,” which uses consensus optimization with a modified 
version of Crammer & Singer’s formulation (Han & Berg, 2012). 
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Conclusion 

To conclude, I will quote Stuart Russel and Peter Norvig, who wrote: 

“You could say that SVMs are successful because of one key insight, one neat trick.” 

(Russell & Norvig, 2010)  

The key insight is the fact that some examples are more important than others. They are the 
closest to the decision boundary, and we call them support vectors. As a result, we discover 
that the optimal hyperplane generalizes better than other hyperplanes, and can be constructed 
using support vectors only. We saw in detail that we need to solve a convex optimization 
problem to find this hyperplane. 

The neat trick is the kernel trick. It allows us to use SVMs with non-separable data, and without 
it, SVMs would be very limited. We saw that this trick, while it can be difficult to grasp at first, is 
in fact quite simple, and can be reused in other learning algorithms. 

That’s it. If you have read this book cover to cover, you should now understand how SVMs 
work. Another interesting question is why do they work? It is the subject of a field called 
computational learning theory (SVMs are in fact coming from statistical learning theory). If you 
wish to learn more about this, you can follow this outstanding course or read Learning from Data 
(Abu-Mostafa, 2012), which provides a very good introduction on the subject. 

You should know that SVMs are not used only for classification. One-Class SVM can be used 
for anomaly detection, and Support Vector Regression can be used for regression. They have 
not been included in this book in order to keep it succinct, but they are equally interesting topics. 
Now that you understand the basic SVMs, you should be better prepared to study these 
derivations. 

SVMs will not be the solution to all your problems, but I do hope they will now be a tool in your 
machine-learning toolbox—a tool that you understand, and that you will enjoy using. 

http://work.caltech.edu/telecourse.html
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Appendix A: Datasets 

Linearly separable dataset 

The following code is used to load the simple linearly separable dataset used in most chapters 
of this book. You can find the code source of the other datasets used in this book in this 
Bitbucket repository. 

 

Figure 60: The training set 

 

Figure 61: The test set 

When a code listing imports the module as in Code Listing 51, it loads the methods displayed in 
Code Listing 52. 

The method get_training_examples returns the data shown in Figure 59, while the method 

get_test_examples returns the data of Figure 60.  

The method get_training_examples returns the data shown in Figure 60, while the method 

get_test_examples returns the data of Figure 61. 

Code Listing 51 

from succinctly.datasets import * 

The method get_training_examples returns the data shown in Figure, while the method 

get_test_examples returns the data of Figure . 

Code Listing 52 

import numpy as np 

 

def get_training_examples(): 

    X1 = np.array([[8, 7], [4, 10], [9, 7], [7, 10], 

                   [9, 6], [4, 8], [10, 10]]) 

https://bitbucket.org/syncfusiontech/svm-succinctly
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    y1 = np.ones(len(X1)) 

    X2 = np.array([[2, 7], [8, 3], [7, 5], [4, 4], 

                   [4, 6], [1, 3], [2, 5]]) 

    y2 = np.ones(len(X2)) * -1 

    return X1, y1, X2, y2 

 

 

def get_test_examples(): 

    X1 = np.array([[2, 9], [1, 10], [1, 11], [3, 9], [11, 5], 

                   [10, 6], [10, 11], [7, 8], [8, 8], [4, 11], 

                   [9, 9], [7, 7], [11, 7], [5, 8], [6, 10]]) 

    X2 = np.array([[11, 2], [11, 3], [1, 7], [5, 5], [6, 4], 

                   [9, 4],[2, 6], [9, 3], [7, 4], [7, 2], [4, 5], 

                   [3, 6], [1, 6], [2, 3], [1, 1], [4, 2], [4, 3]]) 

    y1 = np.ones(len(X1)) 

    y2 = np.ones(len(X2)) * -1 

    return X1, y1, X2, y2 

A typical usage of this code is shown in Code Listing 53. It uses the method get_dataset from 

Code Listing 54, which is loaded with the datasets package. 

Code Listing 53 

from succinctly.datasets import get_dataset, linearly_separable as ls 
 
# Get the training examples of the linearly separable dataset. 
X, y = get_dataset(ls.get_training_examples) 

Code Listing 54 

import numpy as np 

 

def get_dataset(get_examples): 
    X1, y1, X2, y2 = get_examples() 

    X, y = get_dataset_for(X1, y1, X2, y2) 

    return X, y 

 

def get_dataset_for(X1, y1, X2, y2): 

    X = np.vstack((X1, X2)) 
    y = np.hstack((y1, y2)) 

    return X, y 

 

def get_generated_dataset(get_examples, n): 

    X1, y1, X2, y2 = get_examples(n) 

    X, y = get_dataset_for(X1, y1, X2, y2) 
    return X, y 
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Appendix B: The SMO Algorithm 

Code Listing 55 

import numpy as np 
from random import randrange 

  
# Written from the pseudo-code in: 
# http://luthuli.cs.uiuc.edu/~daf/courses/optimization/Papers/smoTR.pdf 
class SmoAlgorithm: 
    def __init__(self, X, y, C, tol, kernel, use_linear_optim): 
        self.X = X 
        self.y = y 
        self.m, self.n = np.shape(self.X) 
        self.alphas = np.zeros(self.m) 
 
        self.kernel = kernel 
        self.C = C 
        self.tol = tol 
 
        self.errors = np.zeros(self.m) 
        self.eps = 1e-3 # epsilon 
 
        self.b = 0 
 
        self.w = np.zeros(self.n) 
        self.use_linear_optim = use_linear_optim 
 
    # Compute the SVM output for example i 
    # Note that Platt uses the convention w.x-b=0  
    # while we have been using w.x+b in the book. 
    def output(self, i): 
        if self.use_linear_optim: 
            # Equation 1 
            return float(np.dot(self.w.T, self.X[i])) - self.b 
        else: 
            # Equation 10 
            return np.sum([self.alphas[j] * self.y[j] 
                           * self.kernel(self.X[j], self.X[i]) 
                           for j in range(self.m)]) - self.b 
 
 
 
    # Try to solve the problem analytically. 
    def take_step(self, i1, i2): 
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        if i1 == i2: 
            return False 
 
        a1 = self.alphas[i1] 
        y1 = self.y[i1] 
        X1 = self.X[i1] 
        E1 = self.get_error(i1) 
 
        s = y1 * self.y2 
 
        # Compute the bounds of the new alpha2. 
        if y1 != self.y2: 
            # Equation 13 
            L = max(0, self.a2 - a1) 
            H = min(self.C, self.C + self.a2 - a1) 
        else: 
            # Equation 14 
            L = max(0, self.a2 + a1 - self.C) 
            H = min(self.C, self.a2 + a1) 
 
        if L == H: 
            return False 
 
        k11 = self.kernel(X1, X1) 
        k12 = self.kernel(X1, self.X[i2]) 
        k22 = self.kernel(self.X[i2], self.X[i2]) 
 
        # Compute the second derivative of the 
        # objective function along the diagonal. 
        # Equation 15 
        eta = k11 + k22 - 2 * k12 
 
        if eta > 0: 
            # Equation 16 
            a2_new = self.a2 + self.y2 * (E1 - self.E2) / eta 
 
            # Clip the new alpha so that is stays at the end of the line. 
            # Equation 17 
            if a2_new < L: 
                a2_new = L 
            elif a2_new > H: 
                a2_new = H 
        else: 
            # Under unusual cicumstances, eta will not be positive. 
            # Equation 19 
            f1 = y1 * (E1 + self.b) - a1 * k11 - s * self.a2 * k12 
            f2 = self.y2 * (self.E2 + self.b) - s * a1 * k12 \ 
                 - self.a2 * k22 
            L1 = a1 + s(self.a2 - L) 



 108 

            H1 = a1 + s * (self.a2 - H) 
            Lobj = L1 * f1 + L * f2 + 0.5 * (L1 ** 2) * k11 \ 
                   + 0.5 * (L ** 2) * k22 + s * L * L1 * k12 
            Hobj = H1 * f1 + H * f2 + 0.5 * (H1 ** 2) * k11 \ 
                   + 0.5 * (H ** 2) * k22 + s * H * H1 * k12 
 
            if Lobj < Hobj - self.eps: 
                a2_new = L 
            elif Lobj > Hobj + self.eps: 
                a2_new = H 
            else: 
                a2_new = self.a2 
 
        # If alpha2 did not change enough the algorithm 
        # returns without updating the multipliers. 
        if abs(a2_new - self.a2) < self.eps * (a2_new + self.a2 \ 
                                               + self.eps): 
            return False 
 

        # Equation 18 
        a1_new = a1 + s * (self.a2 - a2_new) 
 
        new_b = self.compute_b(E1, a1, a1_new, a2_new, k11, k12, k22, y1) 
 
        delta_b = new_b - self.b 
 
        self.b = new_b 
 
        # Equation 22 
        if self.use_linear_optim: 
            self.w = self.w + y1*(a1_new - a1)*X1 \ 
                     + self.y2*(a2_new - self.a2) * self.X2 
 
        # Update the error cache using the new Lagrange multipliers. 
        delta1 = y1 * (a1_new - a1) 
        delta2 = self.y2 * (a2_new - self.a2) 
 
        # Update the error cache. 
        for i in range(self.m): 
            if 0 < self.alphas[i] < self.C: 
                self.errors[i] += delta1 * self.kernel(X1, self.X[i]) + \ 
                                delta2 * self.kernel(self.X2,self.X[i]) \ 
                                - delta_b 
 
        self.errors[i1] = 0 
        self.errors[i2] = 0 
 
        self.alphas[i1] = a1_new 
        self.alphas[i2] = a2_new 
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        return True 
 
    def compute_b(self, E1, a1, a1_new, a2_new, k11, k12, k22, y1): 
        # Equation 20 
        b1 = E1 + y1 * (a1_new - a1) * k11 + \ 
             self.y2 * (a2_new - self.a2) * k12 + self.b 
 
        # Equation 21 
        b2 = self.E2 + y1 * (a1_new - a1) * k12 + \ 
             self.y2 * (a2_new - self.a2) * k22 + self.b 
 
        if (0 < a1_new) and (self.C > a1_new): 
            new_b = b1 
        elif (0 < a2_new) and (self.C > a2_new): 
            new_b = b2 
        else: 
            new_b = (b1 + b2) / 2.0 
        return new_b 
 
    def get_error(self, i1): 
        if 0 < self.alphas[i1] < self.C: 
            return self.errors[i1] 
        else: 
            return self.output(i1) - self.y[i1] 
 
    def second_heuristic(self, non_bound_indices): 
        i1 = -1 
        if len(non_bound_indices) > 1: 
            max = 0 
 
            for j in non_bound_indices: 
                E1 = self.errors[j] - self.y[j] 
                step = abs(E1 - self.E2) # approximation 
                if step > max: 
                    max = step 
                    i1 = j 
        return i1 
 
    def examine_example(self, i2): 
        self.y2 = self.y[i2] 
        self.a2 = self.alphas[i2] 
        self.X2 = self.X[i2] 
        self.E2 = self.get_error(i2) 
 
        r2 = self.E2 * self.y2 
 
        if not((r2 < -self.tol and self.a2 < self.C) or 
                (r2 > self.tol and self.a2 > 0)): 
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            # The KKT conditions are met, SMO looks at another example. 
            return 0 
 
        # Second heuristic A: choose the Lagrange multiplier which 
        # maximizes the absolute error. 
        non_bound_idx = list(self.get_non_bound_indexes()) 
        i1 = self.second_heuristic(non_bound_idx) 
 
        if i1 >= 0 and self.take_step(i1, i2): 
            return 1 
 
        # Second heuristic B: Look for examples making positive  
        # progress by looping over all non-zero and non-C alpha,  
        # starting at a random point. 
        if len(non_bound_idx) > 0: 
            rand_i = randrange(len(non_bound_idx)) 
            for i1 in non_bound_idx[rand_i:] + non_bound_idx[:rand_i]: 
                if self.take_step(i1, i2): 
                    return 1 
 
        # Second heuristic C: Look for examples making positive progress 
        # by looping over all possible examples, starting at a random  
        # point. 
        rand_i = randrange(self.m) 
        all_indices = list(range(self.m)) 
        for i1 in all_indices[rand_i:] + all_indices[:rand_i]: 
            if self.take_step(i1, i2): 
                return 1 
 
        # Extremely degenerate circumstances, SMO skips the first example. 
        return 0 
 
    def error(self, i2): 
        return self.output(i2) - self.y2 
 
    def get_non_bound_indexes(self): 
        return np.where(np.logical_and(self.alphas > 0, 
                                       self.alphas < self.C))[0] 
 
    # First heuristic: loop  over examples where alpha is not 0 and not C 
    # they are the most likely to violate the KKT conditions 
    # (the non-bound subset). 
    def first_heuristic(self): 
        num_changed = 0 
        non_bound_idx = self.get_non_bound_indexes() 
        for i in non_bound_idx: 
            num_changed += self.examine_example(i) 
        return num_changed 
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    def main_routine(self): 
        num_changed = 0 
        examine_all = True 
 
        while num_changed > 0 or examine_all: 
            num_changed = 0 
 
            if examine_all: 
                for i in range(self.m): 
                    num_changed += self.examine_example(i) 
            else: 
                num_changed += self.first_heuristic() 
 
            if examine_all: 
                examine_all = False 
            elif num_changed == 0: 
                examine_all = True 

Code Listing 56 demonstrates how to instantiate an SmoAlgorithm object, run the algorithm, and 
print the result.  

Code Listing 56 

import numpy as np 
from random import seed 
from succinctly.datasets import linearly_separable, get_dataset 
from succinctly.algorithms.smo_algorithm import SmoAlgorithm 
 
 
def linear_kernel(x1, x2): 
    return np.dot(x1, x2) 
 
 
def compute_w(multipliers, X, y): 
    return np.sum(multipliers[i] * y[i] * X[i] for i in range(len(y))) 
 
if __name__ == '__main__': 
    seed(5) # to have reproducible results 
 
    X_data, y_data = get_dataset(linearly_separable.get_training_examples) 
    smo = SmoAlgorithm(X_data, y_data, C=10, tol=0.001, 
kernel=linear_kernel, use_linear_optim=True) 
 
    smo.main_routine() 
 
    w = compute_w(smo.alphas, X_data, y_data) 
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    print('w = {}'.format(w)) 
 
    # -smo.b because Platt uses the convention w.x-b=0 
    print('b = {}'.format(-smo.b)) 
 
    # w = [0.4443664  1.1105648] 
    # b = -9.66268641132 
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